SCI PUBLICATION P387

Steel Building Design: Worked examples for students

In accordance with Eurocodes and the UK National Annexes

Edited by:

M E Brettle B Eng

Reworked in accordance with the UK National Annexes by **D G Brown** C Eng MICE

Published by: The Steel Construction Institute Silwood Park Ascot Berkshire SL5 7QN

Tel: 01344 636525 Fax: 01344 636570

© 2009 The Steel Construction Institute

Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK.

Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page.

Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use.

Publications supplied to the Members of the Institute at a discount are not for resale by them.

Publication Number: SCI P387

ISBN 978-1-85942-191-8

British Library Cataloguing-in-Publication Data.

A catalogue record for this book is available from the British Library.

FOREWORD

The Structural Eurocodes are a set of structural design standards, developed by CEN over the last 30 years, to cover the design of all types of structures in steel, concrete, timber, masonry and aluminium. In the UK they are published by BSI under the designations BS EN 1990 to BS EN 1999, each in a number of 'Parts'. Each Part will be accompanied by a National Annex that implements the CEN document and adds certain UK-specific provisions.

This publication was originally developed as a teaching resource for university lecturers and students, although it will also be of interest to practising designers. It offers a general overview of design to the Eurocodes and includes a set of design worked examples for structural elements within a notional building. The original SCI publication (P376) includes a version of the set of examples in which the values of partial factors and other parameters where national choice is allowed are the values recommended within the Eurocode parts. In the present publication, all the examples have been re-worked using values given in the UK National Annexes.

The author of the introductory text is Miss M E Brettle of The Steel Construction Institute. Mr A L Smith and Mr D G Brown of The Steel Construction Institute contributed to the worked examples. The re-working to incorporate the UK National Annex values was carried out by Mr D G Brown.

The worked examples were written or checked by:

Dr A J Bell	University of Manchester
Prof. I Burgess	University of Sheffield
Mr M Cullen	Glasgow Caledonian University
Dr B Davison	University of Sheffield
Dr Y Du	SCI (formerly of University of Birmingham)
Dr L Gardner	Imperial College London
Dr A Kamtekar	University of Birmingham
Dr B Kim	University of Plymouth
Dr D Lam	University of Leeds
Dr L-Y Li	University of Birmingham (formerly of Aston University)
Dr J T Mottram	University of Warwick
Mr L P Narboux	Normacadre (formerly of SCI)
Dr P Palmer	University of Brighton
Dr K M Peebles	University of Dundee
Dr J Rizzuto	Faber Maunsell (formerly of University of Coventry)
Dr M Saidani	University of Coventry
Dr K A Seffen	University of Cambridge
Mr N Seward	University of Wales, Newport
Prof. P R S Speare	City University
Mr M Theofanous	Imperial College London (formerly of SCI)
Dr W Tizani	University of Nottingham

The preparation of P376 was funded by Corus Construction Services and Development, and their support is gratefully acknowledged. The preparation of the present publication was funded by The Steel Construction Institute.

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

Contents

			Page No.
FOR	EWORD)	Ш
SUN	/IMARY		VI
1	SCOP	E	1
2	STRU(2.1 2.2 2.3	CTURAL EUROCODES SYSTEM National Annexes Geometrical axes convention Terminology and symbols	2 3 4 4
3	BASIS 3.1 3.2	OF STRUCTURAL DESIGN (BS EN 1990) Limit state design Combination of actions	5 5 6
4	DESIG	IN PROCESS	10
5	BUILD 5.1 5.2 5.3 5.4 5.5 5.6 5.7	ING DESIGN Material properties Section classification Resistance Joints Robustness Fire design / protection Corrosion protection	11 11 13 13 16 17 17 18
6	WORK	ED EXAMPLES	19
7	BIBLIC 7.1 7.2 7.3 7.4 7.5	OGRAPHY SCI and SCI/BCSA publications Other publications Sources of electronic information Structural Eurocodes Product Standards	97 97 97 98 98 99

SUMMARY

This publication offers a general overview of the design of steel framed buildings to the structural Eurocodes and includes a set of worked examples showing the design of structural elements within a notional building. It does not present structural theory or explain detailed design rules. It is intended to be of particular help in undergraduate teaching, although it will also provide guidance to practising designers who want to become acquainted with design to the Eurocodes.

The text discusses the structure of the Eurocode system and the sections contained within a Eurocode Part. It introduces the terminology, and the conventions used for axes and symbols. The document introduces the contents of BS EN 1993 (Eurocode 3) and BS EN 1994 (Eurocode 4) that relate to the design of structural steelwork and steel and composite structures respectively.

The worked examples have all been evaluated using the values of parameters and design options given in the UK National Annexes and are therefore appropriate for structures which are to be constructed in the UK.

The publication has been produced with the assistance of structural design lecturers, who were responsible for writing and checking the majority of the original worked examples presented in Section 6.

1 SCOPE

This publication gives a general overview of structural design to the structural Eurocodes and includes a set of worked examples showing the design of structural elements within a notional building.

The introductory text presents a brief overview of the Eurocodes with respect to the sections, conventions and terminology used. The requirements of BS EN 1993 (steel structures) and BS EN 1994 (composite steel and concrete structures) are briefly introduced with respect to building design. Information is also given for the relevant sections of BS EN 1992 (Eurocode 2), which covers the design of concrete elements in composite structures. Robustness, fire design and corrosion protection are briefly discussed.

The publication has been produced with the assistance of structural design lecturers, who have been responsible for writing and checking the majority of the worked examples presented in Section 6. The set of worked examples present the design of structural elements that may be found in a braced steel framed notional building.

Further design guidance may be found in the documents listed in Section 7 of this publication.

Within the worked examples, frequent reference is made to Access Steel documents. These are a series of publicly available guidance notes on the application of the structural Eurocodes to steelwork design. Many of these notes have the status of non-contradictory complementary information (NCCI), having received endorsement from across Europe. Some notes are UK-specific, relating to UK practice alone. The Access Steel website may be found at www.access-steel.com.

Reference is also made to SCI publication P363, *Steel building design: Design data*. That publication contains comprehensive section property data and member resistances for a wide range of steel sections. The member resistances in P363 have been calculated using the UK National Annexes, and should be directly comparable with the resistances calculated in the present publication. P363 is available from the SCI. Section properties and member resistances are also available from the Corus website

(www.corusconstruction.com/en/reference/software).

2 STRUCTURAL EUROCODES SYSTEM

There are ten separate Structural Eurocodes:

EN 1990	Basis of structural design
EN 1991	Actions on structures
EN 1992	Design of concrete structures
EN 1993	Design of steel structures
EN 1994	Design of composite steel and concrete structures
EN 1995	Design of timber structures
EN 1996	Design of masonry structures
EN 1997	Geotechnical design
EN 1998	Design of structures for earthquake resistance
EN 1999	Design of Aluminium Structures

Each Eurocode is comprised of a number of Parts, which are published as separate documents. Each Part consists of:

- Main body of text
- Normative annexes

These form the full text of the Eurocode Part

• Informative annexes

The full text of each Eurocode Part is issued initially by CEN in three languages with the above 'EN' designation. The full text is then provided with a front cover by each national standards body and published within that country using a designation with the national prefix – for example EN 1990 is published by BSI as BS EN 1990. The Eurocode text may be followed by a National Annex (see Section 2.1 below) or a National Annex may be published separately.

As this set of worked examples are for use in the UK, the full BS EN designation has generally been adopted in the text.

Thus the information contained in the full text of the Eurocodes is the same for each country in Europe. Most parts of the structural Eurocodes present the information using Principles and Application Rules. Principles are denoted by the use of a letter P after the clause number e.g. 1.2(3)P, whereas Application Rules do not contain a letter P e.g. 1.2(3). The former must be followed, to achieve compliance; the latter are rules that will achieve compliance with the Principles but it is permissible to use alternative design rules, provided that they accord with the Principles (see BS EN 1990, 1.4(5)).

The general principle adopted in drafting the Eurocodes was that there would be no duplication of Principles or Application Rules. Thus the design basis given in BS EN 1990 applies irrespective of the construction material or the type of structure. For each construction material, requirements that are independent of structural form are given in 'General' Parts, one for each aspect of design, and form-specific requirements (such as for bridges) are given in other Parts (bridge rules are in Parts 2 of the respective material Eurocodes). Therefore, when designing a structure, many separate Eurocode Parts will be required.

The Structural Eurocodes that may be required for the design of a steel and concrete composite building are:

BS EN 1990	Basis of structural design
BS EN 1991	Actions on structures
BS EN 1992	Design of concrete structures
BS EN 1993	Design of steel structures
BS EN 1994	Design of composite steel and concrete structures
BS EN 1997	Geotechnical design
BS EN 1998	Design of structures for earthquake resistance

In addition to references between structural Eurocode Parts, references to other Standards may be given e.g. product standards.

2.1 National Annexes

Within the full text of a Eurocode, national choice is allowed in the setting of some factors and in the choice of some design methods (i.e. the selection of particular Application Rules); the choices are generally referred to as Nationally Determined Parameters (NDP) and these are published in a National Annex.

The National Annex, where allowed in the Eurocode, will:

- Specify which design method to use.
- Specify what value to use for a factor.
- State whether an informative annex may be used.

In addition, the National Annex may give references to resources that contain non-contradictory complimentary information (NCCI) that will assist the designer. Several National Annexes refer to http://www.steel-ncci.co.uk which has been created to contain NCCI and will be updated with additional resources over time.

The guidance given in a National Annex applies to structures that are to be constructed within that country. National Annexes are likely to differ between countries within Europe.

The National Annexes for the country where the structure is to be constructed should always be consulted in the design of a structure.

Within this publication, the values recommended in the UK National Annexes have been used.

2.2 Geometrical axes convention

The convention for member axes and symbols for section dimensions used in the Eurocodes are shown below.

Figure 2.1 Axis convention and symbols for principal dimensions

2.3 Terminology and symbols

The terms used in the Eurocodes have been chosen carefully, for clarity and to facilitate unambiguous translation into other languages. The main terminology used in the Eurocodes includes:

"Actions"	loads, imposed displacements, thermal strain		
"Effects"	internal bending moments, axial forces etc.		
"Resistance"	capacity of a structural element to resist bending moment, axial force, shear, etc.		
"Verification"	check		
"Execution"	construction – fabrication, erection		

The Structural Eurocodes use the ISO convention for sub-scripts. Where multiple sub-scripts occur, a comma is used to separate them. Four main sub-scripts and their definition are given below:

Eurocode Subscript	Definition	Exan	nple
Ed	Design value of an effect	$M_{\rm Ed}$	Design bending moment
Rd	Design resistance	$M_{ m Rd}$	Design resistance for bending
el	Elastic property	$W_{\rm el}$	Elastic section modulus
pl	Plastic property	$W_{ m pl}$	Plastic section modulus

3 BASIS OF STRUCTURAL DESIGN (BS EN 1990)

BS EN 1990 can be considered as the 'core' document of the structural Eurocode system because it establishes the principles and requirements for the safety, serviceability and durability of structures.

3.1 Limit state design

The information given in the Structural Eurocodes is based on limit state design.

BS EN 1990 defines a limit state as a 'state beyond which the structure no longer fulfils the relevant design criteria'.

Limit state design provides a consistent reliability against the failure of structures by ensuring that limits are not exceeded when design values of actions, material and product properties, and geotechnical data are considered. Design values are obtained by applying partial factors to characteristic values¹ of actions and properties.

Limit state design considers the resistance, serviceability and durability of a structure. All relevant design situations should be considered for the structure. The design situations considered by the Eurocodes are:

- Persistent the normal use of the structure.
- Transient temporary situations, e.g. execution.
- Accidental exceptional events, e.g. fire, impact or explosion.
- Seismic seismic events that may act on the structure.

Two limit states are considered during the design process: ultimate and serviceability.

3.1.1 Ultimate limit states

Ultimate limit states are those that relate to the failure of a structural member or a whole structure. Design verifications that relate to the safety of the people in and around the structure are ultimate limit state verifications.

Limit states that should be considered where relevant are:

- Loss of equilibrium of the structure or a structural member.
- Failure of the structure or a structural member caused by: excessive deformation causing a mechanism, rupture, loss of stability, fatigue or other time-dependent effects.

¹ The term "characteristic value" applies to actions, material properties and geometrical properties and is defined for each in BS EN 1990. Generally, it means a representative value that has a certain (low) probability of being exceeded (where a greater value would be more onerous) or of not being exceeded (where a lesser value would be more onerous).

• Failure of the supports or foundations, including excessive deformation of the supporting ground.

3.1.2 Serviceability limit states

Serviceability limit states concern the functioning of the structure under normal use, the comfort of the people using the structure and the appearance of the structure. Serviceability limit states may be irreversible or reversible. Irreversible limit states occur where some of the consequences remain after the actions that exceed the limit have been removed, e.g. there is permanent deformation of a beam or cracking of a partition wall. Reversible limit states occur when none of the consequences remain after the actions that exceed the limit have been removed, i.e. the member stresses are within its elastic region.

Criteria that are considered during serviceability limit state design checks are:

- Deflections that affect the appearance of the structure, the comfort of its users and its functionality.
- Vibrations that may cause discomfort to users of the structure and restrict the functionality of the structure.
- Damage that may affect the appearance or durability of the structure.

The Eurocodes do not specify any limits for serviceability criteria, but limits may be given in the National Annexes. The limits should be defined for each project, based on the use of the member and the Client's requirements.

3.2 Combination of actions

BS EN 1990 requires the structure or member to be designed for the critical load cases that are determined by combining actions that can occur simultaneously. This implies that all variable actions that occur concurrently should be considered in a single combination. However, for buildings, note 1 of clause A1.2.1(1) of BS EN 1990 allows the critical combination to be determined from not more than two variable actions. Therefore, engineering judgement may be used to determine the two variable actions that may occur together to produce the critical combination of actions for the whole building or the particular structural member under consideration within the building.

3.2.1 Ultimate limit state

Two methods for determining the combination of actions to be used for the persistent or transient ultimate limit state (ULS) are presented in BS EN 1990. The methods are to use expression (6.10) on its own or, for strength or geotechnical limit states, to determine the least favourable combination from expression (6.10a) and (6.10b). The National Annex for the country in which the building is to be constructed must be consulted for guidance on which method to use – in the UK, either expression (6.10) or the combination of (6.10a) and (6.10b) may be used.

Where multiple independent variable actions occur simultaneously, the Eurocodes consider one to be a leading variable action $(Q_{k,1})$ and the other(s) to be accompanying variable actions $(Q_{k,i})$. A leading variable action is one that has the most onerous effect on the structure or member.

The expressions for the combinations of actions given in BS EN 1990 for ultimate limit state design are shown below.

Persistent or
transient design
$$\sum_{j\geq 1} \gamma_{G_{i,j}} \mathcal{G}_{k,j} + \gamma_{P} \mathcal{P} + \gamma_{Q,1} \mathcal{Q}_{k,1} + \sum_{j>1} \gamma_{Q,j} \psi_{O,j} \mathcal{Q}_{k,j}$$
(6.10)
situation

$$\sum_{j\geq 1} \gamma_{G,j} \mathcal{G}_{k,j} + \gamma_{P} \mathcal{P} + \gamma_{Q,1} \psi_{O,1} \mathcal{Q}_{k,1} + \sum_{j>1} \gamma_{Q,j} \psi_{O,j} \mathcal{Q}_{k,j}$$
(6.10a)

$$\sum_{j\geq 1} \xi_{j} \gamma_{G,j} \mathcal{G}_{k,j} + \gamma_{\mathsf{P}} \mathcal{P} + \gamma_{\mathsf{Q},1} \mathcal{Q}_{k,1} + \sum_{j>1} \gamma_{\mathsf{Q},j} \psi_{\mathsf{O},j} \mathcal{Q}_{k,j}$$
(6.10b)

Accidental design situation

$$\sum_{j \ge 1} \mathcal{G}_{k,j} + \mathcal{P} + \mathcal{A}_d + (\psi_{1,1} \text{ or } \psi_{2,1}) \mathcal{Q}_{k,1} + \sum_{j > 1} \psi_{2,j} \mathcal{Q}_{k,j} \quad (0.110)$$

Seismic design $\sum_{j\geq 1} \mathcal{G}_{k,j} + \mathcal{P} + \mathcal{A}_{Ed} + \sum_{i\geq 1} \psi_{2,i} \mathcal{Q}_{k,i}$ (6.12b)

where:

- $G_{k,i}$ is the characteristic value of an unfavourable permanent action
- *P* is a prestressing action
- $Q_{k,1}$ is the characteristic value of the leading variable action
- $Q_{k,i}$ is the characteristic value of an accompanying variable action
- $A_{\rm d}$ is the design value of an accidental action
- $A_{\rm Ed}$ is the design value of a seismic action
- γ , ψ and ξ are partial, combination and reduction factors on actions, as given in BS EN 1990. These values are subject to modification in the National Annex, which must be consulted.

Typical values of the partial, combination and reduction factors as given in the UK National Annex are given below:

Partial Factor	Permanent action, $\gamma_{\rm G}$ = 1.35
	Variable action, $\gamma_Q = 1.5$
Combination factor	Office areas, $\psi_0 = 0.7$
	Roofs, $\psi_0 = 0.7$
	Snow loads (at lower altitudes), $\psi_0 = 0.5$
	Wind loads, $\psi_0 = 0.5$
Reduction factor	$\xi = 0.925$

Persistent or transient design situation

The combinations of actions given for the persistent or transient design situations are used for static equilibrium, structural resistance and geotechnical design verifications. It should be noted that for structural verification involving geotechnical actions and ground resistance, additional guidance on the approach to determining the combination of actions is given. Annex A of BS EN 1990 presents three different approaches and allows the National Annex to specify which approach to use when considering geotechnical actions. Guidance contained in BS EN 1997 should also be used when considering geotechnical actions.

Accidental design situation

The combination of actions for the accidental design situation can be used to determine a design value that either;

- contains an accidental action (e.g. impact, fire); or
- applies to a situation after an accidental action has occurred (e.g. after a fire).

In the latter case $A_d = 0$.

Seismic design situation

This combination of actions and guidance given in BS EN 1998 should be used when seismic actions are being considered.

3.2.2 Serviceability Limit State

The expressions for the combinations of actions given in BS EN 1990 for serviceability limit state design are shown below.

Characteristic	$\sum \mathcal{G}_{k,j} + \mathcal{P} + \mathcal{Q}_{k,1} + \mathcal{P}$	$-\sum \psi_{O,i} Q_{k,i}$	(6.14b)
combination	1 ,5	<i>i</i> >1	

Frequent combination	$\sum G_{k,j} + P + \psi_{1,1}Q_{k,1} + \sum \psi_{2,i}Q_{k,i}$		(6.15b)
	_j≥1	/>1	

Quasi-permanent combination

 $\sum_{j \ge 1} \mathcal{G}_{k,j} + \mathcal{P} + \sum_{i \ge 1} \psi_{2,i} \mathcal{Q}_{k,i}$ (6.16b)

Characteristic combination

This combination of actions should be used when considering an irreversible serviceability limit state. The characteristic combination should be used when considering the functioning of the structure, damage to finishes or non-structural elements.

Frequent combination

Reversible serviceability limit states are covered by the frequent combination of actions. This combination could be used when checking the non-permanent vertical displacement of a floor that supports a machine that is sensitive to vertical alignment.

Quasi-permanent combination

The quasi-permanent combination of actions should be used when considering reversible limit states or long term effects. When considering the appearance of a structure, the quasi-permanent combination should be used.

BS EN 1990 states that advice on which expression (6.14b) to (6.16b) to use is given in the *material* Standard. For steelwork, the National Annex to BS EN 1993 gives suggested limits for calculated vertical deflections and advises that the permanent loads should not be included. The suggested limits are given below.

Vertical deflection	
Cantilevers	length/180
Beams carrying plaster or other brittle finish	Span/360
Other beams (except purlins and sheeting rails)	Span/200
Purlins and sheeting rails	To suit the characteristics of particular cladding

Horizontal deflection limits are also suggested, which are height/300. This limit is not applicable to portal frames.

4 **DESIGN PROCESS**

The procedures that should be followed when designing a structure are:

1. Choose the structural frame concept, considering:

- The layout of the structural members
- The type of connections, i.e. simple, semi-rigid or moment resisting
- The stability of the structure at all stages (during construction, use and demolition).
- 2. Determine the actions (loading) on the structure and its members.
- 3. Analyse the structure, including evaluation of frame stability.
- 4. Design individual members and connections.
- 5. Verify robustness.
- 6. Choose the steel sub-grade.
- 7. Specify appropriate protection of steel, e.g. against fire and corrosion.

5 BUILDING DESIGN

BS EN 1993-1-1 gives generic design rules for steel structures and specific guidance for structural steelwork used in buildings. It presents design rules for use with the other parts of BS EN 1993 for steel structures and with BS EN 1994 for composite steel and concrete structures.

BS EN 1993-1 comprises twelve parts (BS EN 1993-1-1 to BS EN 1993-1-12). When designing orthodox steel framed buildings, the following parts of BS EN 1993-1 will be required:

- BS EN 1993-1-1 General rules and rules for buildings
- BS EN 1993-1-2 Structural fire design
- BS EN 1993-1-3 Supplementary rules for cold-formed members and sheeting
- BS EN 1993-1-5 Plated structural elements
- BS EN 1993-1-8 Design of joints
- BS EN 1993-1-10 Material toughness and through-thickness properties

When designing a steel and concrete composite building, the following parts of Eurocode 4 will be required:

BS EN 1994-1-1	Design of composite steel and concrete structures - General rules and rules for buildings
BS EN 1994-1-2	Design of composite steel and concrete structures - Structural fire design

In addition to the above, the following Eurocode is needed:

BS EN 1992-1-1 Design of concrete structures - General rules and rules for buildings

5.1 Material properties

5.1.1 Steel grades

The rules in BS EN 1993-1-1 relate to structural steel grades S235 to S460 in accordance with BS EN 10025, BS EN 10210 or BS EN 10219 and thus cover all the structural steels likely to be used in buildings. In exceptional circumstances, components might use higher strength grades; BS EN 1993-1-12 gives guidance on the use of BS EN 1993-1-1 design rules for higher strength steels. For the design of stainless steel components and structures, reference should be made to BS EN 1993-1-4.

Although Table 3.1 of BS EN 1993-1-1 presents steel strengths, the UK National Annex specifies that the nominal yield strength (f_y) and ultimate strength (f_u) of the steel should be taken from the product Standard. The product Standards give more 'steps' in the reduction of strength with increasing thickness of the product. It should be noted that where values from the product standard are used, the specific product standard for the steel grade (e.g. BS EN 10025-2) is required when determining strength values, since there is a

slight variation between the Parts of BS EN 10025 for the strength of thicker elements.

The nominal values are used as characteristic values of material strength. Yield and ultimate strength values for common steel thicknesses for S275 and S355 steels given as given in the product Standards are reproduced here in Table 5.1.

The National Annex specifies that when a range of ultimate strengths is given in the product Standard, the lowest value of the range must be chosen. Ultimate strengths in Table 5.1 are therefore the minimum in the quoted range. S275 plate is generally manufactured to BS EN 10025-2. Plate manufactured to other parts of BS EN 10025 may have a slightly different ultimate strength.

	Nominal thickness (mm)			
Standard and steel grade	<i>t</i> ≤ 16	$16 < t \le 40$	$3 < t \le 100$	
	Yield strength (f _y) N/mm ²	Yield strength (f _y) N/mm²	Min. Ultimate strength (<i>f</i> u) N/mm ²	
Sections and plate to BS EN 10025-2				
S275	275	265	410	
S355	355	345	470	

Table 5.1*Yield and ultimate strengths*

For yield strengths at thickness > 40mm, consult the Standard

S275 plate is generally manufactured to BS EN 10025-2. Plate manufactured to other parts of BS EN 10025 may have a slightly different ultimate strength.

Although Table 2.1 of BS EN 1993-1-10 can be used to determine the most appropriate steel sub-grade to use, the use of Published Document PD 6695-1-10 for structures to be constructed in the UK is recommended. This PD provides limiting thicknesses related to service temperatures of -5° C and -15° C for internal and exposed steelwork.

5.1.2 Concrete

For structural concrete, BS EN 1994-1-1 refers to BS EN 1992-1-1 for properties but it relates to a narrower range of concrete strength classes than are given in BS EN 1992-1-1 (it omits the lowest and highest grades in BS EN 1992-1-1).

Strength and mechanical properties of concrete for different strength classes are given in Table 3.1 of BS EN 1992-1-1 for normal concrete and in Table 11.3.1 for lightweight aggregate concrete. The concrete strength classes are based on characteristic cylinder strengths ($f_{\rm ck}$), which are determined at 28 days.

Concrete designations are given typically as C25/30, where the cylinder strength is 25 MPa (N/mm²) and the cube strength is 30 MPa. Properties are given for a range of lightweight aggregate concrete grades, for densities between 800 and 2000 kg/m²; a typical designation is LC25/28.

5.1.3 Shear connectors

Properties for headed stud shear connectors should be determined from EN ISO 13918, which covers a range of stud diameters from 10 mm to 25 mm and two materials – structural steel and stainless steel. In determining the design resistance, BS EN 1994-1-1 limits the material ultimate tensile strength to 500 N/mm². When specifying headed stud shear connectors, the designation "SD" is used - for example: "SD 19×100 ", which is a stud of 19 mm diameter and a nominal height of 100 mm.

5.1.4 Reinforcement

BS EN 1994-1-1, Section 3.2 refers to BS EN 1992-1-1 for the properties of reinforcing steel. However, it should be noted BS EN 1994-1-1 permits the design value of the modulus of elasticity for reinforcing steel to be taken as equal to that for structural steel given in BS EN 1993-1-1 (i.e. 210 kN/mm² rather than 200 kN/mm²).

5.1.5 Profiled steel decking

BS EN 1994-1-1 refers to Sections 3.1 and 3.2 of BS EN 1993-1-3 for the material properties of profiled steel sheeting.

5.2 Section classification

Four classes of cross section are defined in BS EN 1993. Each part of a section that is in compression is classified and the class of the whole cross section is deemed to be the highest (least favourable) class of its compression parts. Table 5.2 of BS EN 1993-1-1 gives limits for the width to thickness ratios for the compression parts of a section for each classification.

The section classification in BS EN 1993-1-1 is adopted for composite sections. Where a steel element is attached to a reinforced concrete element, the classification of the element can, in some cases, be improved. Requirements for ductility of reinforcement in tension are given for class 1 and class 2 cross sections.

5.3 Resistance

Design values of member and connection resistances are determined from characteristic values of material strength and geometrical properties, divided by a partial factor (γ_M). Values of γ_M are given in BS EN 1993-1-1 or BS EN 1994-1-1, as appropriate.

Key values from the National Annexes to BS EN 1993-1-1 and BS EN 1993-1-8 are given below.

Fac	tor	Value	
Άмо	(resistance of cross-sections)	1.0	
<i>γ</i> Μ1	(strength checks of members)	1.0	
∕∕М2	(resistance of bolts and welds)	1.25	

5.3.1 Cross sectional resistance

Steel sections

Expressions for determining the cross sectional resistance in tension, compression, bending and shear for the four classes of sections are given in Section 6.2 of BS EN 1993-1-1. The design values of resistance are expressed as $N_{t,Rd}$, $N_{c,Rd}$, $V_{c,Rd}$ and $M_{c,Rd}$ respectively.

For slender webs, the shear resistance may be limited by shear buckling; for such situations, reference is made to BS EN 1993-1-5. Shear buckling is rarely a consideration with hot rolled sections.

Composite sections

The design bending resistance of a composite section may be determined by elastic analysis and non-linear theory for any class of cross section; for Class 1 or Class 2 cross-sections, rigid-plastic theory may be used.

Plastic resistance moments of composite sections may be determined either assuming full interaction between the steel and reinforced concrete or for partial shear connection (i.e. when the force transferred to the concrete is limited by the resistance of the shear connectors).

The resistance of a composite section to vertical shear is generally taken simply as the shear resistance of the structural steel section. Where necessary, the resistance of uncased webs to shear buckling should be determined in accordance with BS EN 1993-1-5.

5.3.2 Buckling resistance

Steel sections

Members in compression

BS EN 1993-1-1 presents guidance for checking flexural, torsional and torsional-flexural buckling for members in compression. The Eurocode requires flexural buckling resistance to be verified for all members; torsional and torsional-flexural buckling resistances only need to be verified for members with open cross sections.

A set of five buckling curves is given in Figure 6.4 of BS EN 1993-1-1. The buckling curve is selected appropriate to the cross section type and the axis about which the column buckles. The curves give the value of a reduction factor χ dependent on the non-dimensional slenderness of the member $\overline{\lambda}$. The factor χ is applied as a multiplier to the resistance of the cross section to determine the buckling resistance of the member.

Generally, for columns using hot rolled I and H sections, torsional or torsionalflexural buckling will not determine the buckling resistance of the column.

Members in bending

Laterally unrestrained members in bending about their major axes need to be verified against lateral torsional buckling.

Four buckling curves are defined for lateral torsional buckling, in a similar way to those for flexural buckling of members in compression, but the curves are not illustrated in BS EN 1993-1-1. As for flexural buckling, a reduction factor χ_{LT}

is determined, dependent on the non-dimensional slenderness λ_{LT} and on the cross section; the rules are given in clause 6.3.2 of BS EN 1993-1-1.

For uniform members in bending, three approaches are given:

- Lateral torsional buckling curves general case
- Lateral torsional buckling curves for rolled sections and equivalent welded sections
- A simplified assessment method for beams in buildings with discrete lateral restraints to the compression flange.

The second approach gives slightly higher resistances for rolled sections, and is recommended. The UK National Annex should be considered carefully, as it modifies the imperfection factors for rolled sections (affecting tall, narrow beams) and provides specific factors to be used for welded sections.

The guidance given for calculating the beam slenderness for the first two approaches requires the value of the elastic critical moment for lateral torsional buckling $(M_{\rm cr})$, but no expressions are given for determining this value. Therefore, calculation methods need to be obtained from other sources; three sources are:

- A method for calculating beam slenderness for rolled I, H and channel sections is given in the SCI publication P362 *Steel building design: Concise guide to Eurocode 3*.
- NCCI for calculating M_{cr} is provided on the Access Steel web site (www.access-steel.com).
- *LTbeam*; free software from http://www.cticm.eu/spip.php?lang=en

Members in bending and axial compression

For members subject to bending and axial compression the criteria given in 6.3.3 of BS EN 1993-1-1 must be satisfied.

Interaction factors (k_{ij}) used in the checks may be calculated using either method 1 or 2 given respectively in Annexes A and B of BS EN 1993-1-1. The approach in Annex B is considered to be the simpler of the two methods.

General method for lateral and lateral torsional buckling

The general method given in 6.3.4 of BS EN 1993-1-1 should not be confused with the general case for lateral torsional buckling given in 6.3.2.2 of BS EN 1993-1-1.

The general method gives guidance for structural components that are not covered by the guidance given for compression, bending or bending and axial compression members, and is not likely to be used by most building designers.

Lateral torsional buckling with plastic hinges

Section 6.3.5 of BS EN 1993-1-1 presents guidance for buildings that are designed using plastic analysis, such as portal frames.

5.3.3 Shear Connection

Rules for the verification of the shear connection in composite beams are given in Section 6.6 of BS EN 1994-1-1. Detailed rules are only given for headed stud connectors. Dimension limits and rules for transverse reinforcement are given. Natural bond between the concrete and steel is ignored.

BS EN 1994-1-1 gives the design shear resistance of a headed stud connector as the smaller of the shear resistance of the stud and the crushing strength of the concrete around it. When used with profiled steel sheeting, a reduction factor, based on the geometry of the deck, the height of the stud and the number of studs per trough (for decking perpendicular to the beam), is used to reduce the resistance of the shear connectors.

Limitations are given on the use of partial shear connection, i.e. for situations where the design shear resistance over a length of beam is insufficient to develop the full resistance of the concrete slab.

Longitudinal shear resistance of concrete slabs

The longitudinal shear resistance of a slab is calculated using the procedure given in BS EN 1992-1-1. However, the shear planes that may be critical and the contributions from the reinforcement or the profiled steel sheeting (if the shear connectors are through-deck welded) are defined in BS EN 1994-1-1.

5.4 Joints

BS EN 1993-1-8 gives rules for the design of joints between structural members.

Note that a joint is defined as a zone where two or more members are interconnected; a connection is the location where elements meet and is thus the means to transfer forces and moments.

BS EN 1993-1-8 gives guidance for the design of bolted and welded steel connections subject to predominantly static loading. The steel grades covered are S235, S275, S355 and S460.

BS EN 1993-1-8 classifies joints according to their rotational stiffness as nominally pinned, rigid or semi-rigid. The appropriate type of joint model to be used in global analysis depends on this classification and the method of global analysis. The Standard notes that joints may be classified on the basis of experimental evidence, experience of previous satisfactory performance in similar cases or by calculations based on test evidence. The UK National Annex advises that connections designed in accordance with the principles given in the publication *Joints in steel construction: Simple connections* may be classified as nominally pinned joints.

5.4.1 Bolted connections

BS EN 1993-1-8 defines five categories of bolted connections. These categories distinguish between connections loaded in shear or tension, and connections containing preloaded or non-preloaded bolts. A distinction is also made between preloaded bolts that have slip resistance at serviceability limit state and slip resistance at ultimate limit state. Minimum edge and end distances and bolt spacings are given in terms of the diameter of the bolt hole.

Nominal yield (f_{yb}) and ultimate tensile (f_{ub}) strengths are given for a wide range of bolt classes in Table 3.1 BS EN 1993-1-8; the nominal values should be adopted as characteristic values.

5.4.2 Welded connections

BS EN 1993-1-8 gives guidance for the design of the following types of welds:

- Fillet welds
- Fillet welds all round
- Full penetration butt welds
- Partial penetration butt welds
- Plug welds
- Flare groove welds.

Design resistances of fillet and partial penetration welds are expressed in relation to their throat thickness (rather than leg length) and the ultimate strength of the material joined.

5.5 Robustness

Connections between building members should be designed so that they prevent the building from failing in a manner disproportionate to the event that has caused the structural damage.

BS EN 1991-1-7 gives the design requirements for making structures robust against accidental actions. The Eurocodes separate buildings into 4 classes, with different design requirements for each class of structure.

In addition to the requirements given in the Eurocodes, any national requirements should also be satisfied. In England and Wales, the requirements for the control of disproportionate collapse are given in Approved Document A of the Building Regulations. In Scotland the requirements are given in The Scottish Building Standards, Technical Handbook: Domestic and for Northern Ireland they are given in The Building Regulations (Northern Ireland), Technical Booklet D.

5.6 Fire design / protection

Structural steelwork must either be protected or designed in such a way as to avoid premature failure of the structure when exposed to fire.

Fire protection may be given to structural steelwork members by the use of:

- Intumescent paints
- Mineral boards
- Concrete encasement.

Design guidance for the accidental design situation for fire exposure is given in BS EN 1993-1-2 for structural steelwork and in BS EN 1994-1-2 for composite steel and concrete structures.

5.7 Corrosion protection

The main points to be considered during the design process when deciding on the type of corrosion protection to be applied to the structural steelwork are:

- Application of coating the need to ensure that the chosen coating can be efficiently applied.
- Contact with other materials.
- Entrapment of moisture and dirt around the steelwork.
- Other factors, e.g. provision of suitable access for maintenance and inspection during the life of the structure.

Types of corrosion protection for structural steelwork members include painted coatings, hot-dip galvanizing and thermal (metal) spraying. Guidance on corrosion protection can be found in the *Corrosion Protection Guides* produced by Corus.

6 WORKED EXAMPLES

The set of worked examples in this Section present the design of structural elements that may be found in a braced steel frame building.

The following should be noted when using the worked examples:

- The structural arrangements used in the notional building considered in this publication are not typical of building design. This is because the structural solutions have been chosen to demonstrate a range of design situations.
- Within the examples, **UK National Annex values have been used.** For construction in other countries, the appropriate National Annexes should be consulted.
- Combination of actions the examples generally use the least favourable value obtained from either expression (6.10a) or (6.10b) of BS EN 1990, and usually (6.10b), since this is generally the least favourable in orthodox construction.

The worked examples contained in this Section are:

		Page
00	Structural layout and Actions	21
01	Simply supported restrained beam	23
02	Simply supported unrestrained beam	29
03	Simply supported composite beam	35
04	Edge beam	45
05	Column in simple construction	51
06	Roof truss	55
07	Choosing a steel sub-grade	61
08	Slab design	63
09	Bracing and bracing connections	71
10	Beam-to-column flexible end plate connection	83
11	Column base connection	91
12	Frame stability	93

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

	7	Job No.			Sheet	1 0	of <i>2</i>	Rev C			
	2	Job Title	Example No. 00	0	Revised	d by	y DGB, April 09				
	â	Subject	Structural layo	ut and actio	ons						
Silwood Park, Asc	ot, Berks SL5 7QN			1							
Fax: (01344) 636	570	Client		Made by	MEB	Date	Sept	2006			
CALCULATION	I SHEET			Checked by	DGB	Date	Jan 2	008			
Unless stated	Structural layout and	d actions	<u>)</u>								
otherwise all references are to BS EN 1991-1- 1:2002	The various structural considered in this pub This is because the s demonstrate a range	arrangem plication a tructural of design	ents used in the re not typical of solutions have b situations.	e notional b ⁵ building da een choser	uilding esign. 1 to						
	This example defines t on the building shown	the charac in Figure	cteristic values c 0.1.	of the actio	ns that a	act					
	Characteristic action	ns – Floc	ors above grou	nd level							
	Permanent actions										
	Self weight of floor			3.5 kN/	m^2						
	Self weight of ceiling, Total permanent actio	Total permanent action is					Permanent action				
	$g_{k} = 3.5 + 0.2 = 3$	3.7 kN/m²	2			$g_{\rm k} = 3.7 {\rm km}$					
	Variable actions										
NA2.4	Imposed floor load fo	r offices ((category B1)	2.5 kN/	m²						
Table NA.2 Table NA.3	Imposed floor load for moveable partitions				m ²						
6.3.1.2(8)	Total variable action is	ion is					Variable	action,			
	$q_{\rm k} = 2.5 + 0.8 = 3$	3.3 kN/m²	2		$q_{\rm k} = 3.3$			3 kN/m⁻			
	Imposed roof action	<u>15</u>									
	Permanent actions										
	Self weight of roof cc	nstructio	n	0.75 kM	V/m ²						
	Self weight of ceiling Total permanent actio	and servio n is	ces	0.15 kľ	N/m⁻		Roof Pe	rmanent			
	$g_k = 0.75 + 0.15$	= 0.9 kN	l/m ²				action, $g_k = 0.3$	∂ kN/m²			
	Variable actions										
NA 2.10	The roof is only acces	sible for	normal maintenar	nce and rep	Pair						
	Imposed roof load The imposed roof load less than O.G kN/m ² , t is taken from EN 199	0.6 kN/m mposed roof load due to snow obtained from EN 199 than 0.6 kN/m², therefore the characteristic imposed aken from EN 1991-1-1.				is ad	Roof Va action, $q_k = 0.6$	riable 5 kN/m²			

The wind load considered here is only for one direction. Other directions must be considered during the design process. Calculation of the wind loading according to EN 1991-1-4 has not been considered in this example.

	7	Job No.			Sheet	1 0	of <i>5</i>	Rev	С			
	2	Job Title	Example no. 01		Revised	l by [y DGB, April 09					
SC	Ì	Subject	Simply support	ed fully res	strained	bearr	1					
Silwood Park, Asc	ot, Berks SL5 7QN											
Telephone: (01344 Fax: (01344) 6365	4) 636525 570	Client		Made by	DL	Date	Nov 2	2006				
CALCULATION	SHEET			Checked by	JTM	Date	Dec 2	2006				
Unless stated otherwise all references are to BS EN 1993-1- 1:2005 See structural arrangement and loading BS EN 1990 NA.2.2.3.2 Table NA.A1.2(B) BS EN 1990 6.4.3.2	Simply supported full This example demonst composite beam under and because the cond structural screed, the Consider floor beam Beam span, $L = 8$. Bay width, $= 6.0$ Actions Permanent action Variable action Ultimate limit state (U Partial factors for action cons, the partial factors state design of stru- actions, the partial factors partial factor for perm Partial factor for varial Reduction factor Note for this example, the only variable action impact on the design Combination of actions	Ily restra rates the r uniform rete slabs compres at Level 1 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m 0 m	ained beam design of a fully loading. The step is are fully groute is an fully groute is an efully grou	(restrained eel beam is ed and cove a is fully res 2 (ing geotec ed for ultinonal Annex. = 1.35 = 1.5 = 0.925 (ψ_0) is not re ad. The wind	d non- horizont ered wit strained. strained. chnical nate limit nate limit equired i d has no	al ha	$g_k = 3.$ $g_k = 3.$	7 kN/r 3 kN/r	m² m²			
Eq. (G.10b)	= $(0.925 \times 1.35 \times 3.7)$ UDL per metre length $F_d = 9.57 \times 6.0 = 57$ Design moment and Maximum design mome about the major $(y-y)$ $M_{y,Ed} = \frac{F_d L^2}{8} = \frac{57.4 \times 8}{8}$	7) + (1.5 × of beam 3.4 kN/m shear for ent, $M_{y,Ed}$ axis is: $\langle 8.0^2 \\ 3 = 4$	(3.3) = 9.57 kN accounting for b <u>rce</u> , occurs at mid-e	l/m ² ay width of opan, and fo	f G m, or bendi	ng	ULS des = 57.4 Maximum moment span is / = 459	ign loa kN/m I bendi at mid M _{y, Ea} sNm	nd F_a ing			

Example 01 S	imply supported fully restrained beam		Sheet 2	of <i>5</i>	Rev
6.1(1)	Maximum design shear force, V_{Ed} , occur is: $V_{Ed} = \frac{F_d L}{2} = \frac{57.4 \times 8}{2} = 230 \text{ kN}$ Partial factors for resistance $\gamma_{MO} = 1.0$	s at the end supp	orts, and	Maximur shear fo support $V_{\rm Ed} = 2$	n vertical orce at is is 230 kN
NA 2.15	Trial section				
NA 2.4 BS EN 10025-2 Table 7	An Advance UK Beam (UKB) S275 is to nominal thickness (t) of the flange and w 16 mm, the yield strength is: $f_y = 275 \text{ N/mm}^2$	be used. Assumir eb is less than or	ng the equal to	Yield str f _y = 275	ength is 5 N/mm²
	The required section needs to have a pl major-axis $(\gamma - \gamma)$ that is greater than:	astic modulus abc	out the		
	$W_{\rm pl,y} = \frac{M_{\rm y,Ed}\gamma_{\rm MO}}{f_{\rm y}} = \frac{459 \times 10^3 \times 1.0}{275} =$	1669 cm ³ .			
	From the tables of section properties to UKB, S275, which has $W_{pl,y} = 1830$ cm $h \frac{b}{z}$ $h \frac{b}{z}$	ry section 457 × 1 ³	191 × 82		
P363	Section 457 × 191 × 82 UKB has the properties	following dimensic	ons and		
	Depth of cross-section Web depth Width of cross-section Depth between fillets Web thickness Flange thickness Radius of root fillet Cross-sectional area Second moment of area (y-y) Second moment of area (z-z) Elastic section modulus (y-y) Plastic section modulus (y-y)	$ \begin{array}{l} h &= 460.0 \\ h_w &= 428.0 \\ (h_w &= h - 2t_{\rm f}) \\ b &= 191.3 \\ d &= 407.6 \\ m \\ t_w &= 9.9 \\ m \\ t_{\rm f} &= 16.0 \\ m \\ r &= 10.2 \\ m \\ A &= 104 \\ m \\ I_y &= 37100 \\ I_z &= 1870 \\ w_{\rm el,y} &= 1610 \\ m \\ W_{\rm pl,y} &= 1830 \\ m \\ \end{array} $	mm mm nm nm nm n ² cm ⁴ cm ⁴ cm ³ cm ³		
3.2.6(1)	Modulus of elasticity $E = 210000$ N/m	m ²			

Example 01 S	mply supported fully restrained beam	Sheet	3	of	5	Rev		
	Classification of cross-section					·		
5.5 \$ Table 5.2	For section classification the coefficient e is:							
	$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$							
	Outstand flange: flange under uniform compression $c = \frac{(b - t_w - 2r)}{2} = \frac{(191.3 - 9.9 - 2 \times 10.2)}{2} = 80.5 r$	Dutstand flange: flange under uniform compression $c = \frac{(b - t_w - 2r)}{2} = \frac{(191.3 - 9.9 - 2 \times 10.2)}{2} = 80.5 \text{ mm}$						
	$\frac{c}{t_{\rm f}} = \frac{80.5}{16.0} = 5.03$							
	The limiting value for Class 1 is $\frac{c}{t} \le 9\varepsilon = 9 \times 0.92 = 8.2$	8						
	5.03 < 8.28							
	Therefore, the flange outstand in compression is Class 1.							
	Internal compression part: web under pure bending							
	c = d = 407.6 mm							
	$\frac{c}{t_{\rm w}} = \frac{407.6}{9.9} = 41.17$							
	The limiting value for Class 1 is $\frac{c}{t} \le 72\varepsilon = 72 \times 0.92 = 6$	66.24						
	41.17 < 66.24							
	Therefore, the web in pure bending is Class 1.							
	Therefore the section is Class 1 under pure bending.			S	ection	is Class 1		
	Member resistance verification							
6.2.6	Shear resistance							
6.2.6(1)	The basic design requirement is:							
	$\frac{V_{\rm Ed}}{V_{c,\rm Rd}} \le 1.0$							
6.2.6(2)	$V_{c,Rd} = V_{pl,Rd} = \frac{A_{v}\left(f_{y}/\sqrt{3}\right)}{\gamma_{MO}}$ (for Class 1 sections)							
6.2.6(3)	For a rolled I-section with shear parallel to the web the sh $A_{\rm v} = A - 2bt_{\rm f} + (t_{\rm w} + 2r)t_{\rm f}$ but not less than $\eta h_{\rm w} t_{\rm w}$	iear ar	ea is					
	$A_v = 104 \times 10^2 - (2 \times 191.3 \times 16.0) + (9.9 + 2 \times 10.2)$ = 4763 mm ²	x 16						
	$\eta = 1.0$ (conservative)							
	$\eta h_w t_w = 1.0 \times 428.0 \times 9.9 = 4237 \text{ mm}^2$							
	$4/63 \text{ mm}^2 > 423/ \text{ mm}^2$							

Example 01 S	Sheet 4	of <i>5</i>	Rev
6.2.6(2)	The design shear resistance is therefore $V_{c,Rd} = V_{pl,Rd} = \frac{4763 \times (275/\sqrt{3})}{1.0} \times 10^{-3} = 756 \text{ kN}$	Design s resistand $V_{c,Rd} = 7$	shear ce is: 756 kN
	$\frac{V_{\rm Ed}}{V_{c,\rm Rd}} = \frac{230}{756} = 0.30 < 1.0$		
	Therefore, the shear resistance of the section is adequate. Shear buckling	Shear re adequate	esistance is e
6.2.6(6)	Shear buckling of the unstiffened web need not be considered provided:		
	$\frac{h_{w}}{t_{w}} \le 72\frac{\varepsilon}{\eta}$		
	$\frac{h_{\rm w}}{t_{\rm w}} = \frac{428.0}{9.9} = 43$		
	$72\frac{\varepsilon}{\eta} = 72 \times \left(\frac{0.92}{1.0}\right) = 66$		
	43 < 66 Therefore shear buckling check need not be considered.		
	Moment Resistance		
6.2.5(1)	The design requirement is:		
	$\frac{M_{\rm Ed}}{M_{c,\rm Rd}} \leq 1.0$		
6.2.5(2)	$M_{c,Rd} = M_{pl,Rd} = \frac{W_{pl,y} \times f_y}{\gamma_{MO}}$ (For Class 1 sections)		
6.2.8(2)	At the point of maximum bending moment the shear force is zero. Therefore the bending resistance does not need to be reduced due to the presence of shear. $^{1)}$		
6.2.5(2)	$M_{c,Rd} = M_{pl,Rd} = \frac{1830 \times 275}{1.0} \times 10^{-3} = 503 \text{ kNm}$	Design b resistand $M_{c,Rd} = 5$	pending ce is: 503 kNm
	$\frac{M_{\rm y,Ed}}{M_{c,Rd}} = \frac{459}{503} = 0.91 < 1.0$		
	Therefore, the design bending resistance of the section is adequate.	Bending is adequ	resistance Iate
1) Preside 1 44		C	1 1 .

) Provided that the shear force for the rolled section is less than half of $V_{\text{pl.Rd}}$ at the point of maximum bending moment, its effect on the moment resistance may be neglected. At mid-span where the bending moment is at a maximum, the shear force is zero. The maximum shear force occurs at the end supports where for the uniformly distributed load the bending moment is zero. Therefore there is no reduction to the section's design strength, f_y .

Example 01 S	imply supported fully restrained beam	Sheet	5	of	5	Rev
	Serviceability Limit State (SLS)					
BS EN 1990 NA 2.2.6	Guidance on deflection limits and combinations of actions t considered are given in the material Standards.	to be				
BS EN 1993-1-1 NA 2.23	Vertical deflections should normally be calculated under th characteristic load combination due to variable loads. Pern loads should not be included.	e nanent	.			
BS EN 1990	The characteristic load combination at SLS is:					
6.5.3 (6.14b)	$\sum \mathcal{G}_{k} + \mathcal{Q}_{k,1} + \sum \psi_{\mathcal{O},i} \mathcal{Q}_{k,i}$					
	This is modified by NA 2.23 to EN 1993-1-1 which states permanent loads should not be included. As there is only c variable action present, the term $\sum \psi_{0,i} Q_{k,i} = 0$	s that one				
	Vertical deflection of beam					
	The vertical deflection at the mid-span is determined as:					
	$w = \frac{5L^4 q_k}{384 E I_y}$					
	$q_{\rm k} = 3.3 \times 6.0 = 19.8$ kN/m					
	$w = \frac{5 \times 8000^4 \times 19.8}{384 \times 210000 \times 37100 \times 10^4} = 13.6 \text{ mm}$			Va de	ertical i eflectic	nid-span n 3.6 mm
BS EN	Vertical deflection limit for this example is				- 1	0.6 mm
1993-1-1 NA 2.23	$\frac{\text{Span}}{360} = \frac{8000}{360} = 22.2 \text{ mm}$					
	13.6 mm < 22.2 mm					
	Therefore, the vertical deflection of the section is satisfac	tory.		Va iS	ertical (accept	deflection table
	Adopt 457×191×82 UKB in S275 steel					
	Dynamics					
	Generally, a check of the dynamic response of a floor bean required at SLS. These calculations are not shown here.	n woul	d be			

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

		Job No.			Sheet	1 c	of 6	Rev	С	
		Job Title	Example no. 02	Revised by DGB, April 09						
SC		Subject	Simply support	am						
Silwood Park, Asco	ot, Berks SL5 7QN									
Telephone: (01344 Fax: (01344) 6365	4) 636525 570	Client		Made by	YGD	Date	Nov 2	2006		
CALCULATION	SHEET			Checked by	DGB	Date	Jan 2	008		
Unless stated otherwise, all references are to BS EN 1993-1-1	Simply supported un Introduction This example demonsti- unrestrained beam, as beam is 6.0 m long. If does not offer lateral not destabilising. In m details ensure the load that the details also p <i>Combination of action</i> Using the method dee actions for ultimate line $F_d = 60.8$ kN/m <i>Note: 60.8</i> kN/m period beam. <i>Design Values of Bend</i> $F_d = 60.81$ $f_d = 60.81$	rates the b typified land restraint. nost cases d applicat provide lat s at Ultime for bed in nit state of manent ac ding Mome kN/m	ed beam design of a simple, it is assum It is also assum to of internal bear cion is not desta ceral restraint. Example 1 the a design is determ <i>ation allows for the</i> <i>ent and Shear F</i> Bending n Bending n Shear for 182.4 kN ed beam $L = 0$ e midspan	oly support 3 on level and that the led that the red that the red that the red that that the red that that the red that that the red the red the red the red the red the the the red the red the the red the the red the red the red the red the red the red the the red the the the the the the the the the the	ted 1. The e floor s e loading onstructi is likely e of ght of th	lab g is on	Design v actions $F_d = 60$	alue c .8 kN/	of (m	
	$M_{\rm y,Ed} = \frac{F_{\rm d} L^2}{8} = \frac{60.8}{8}$	$\frac{3 \times 6^2}{8} = 2$	273.6 kN/m				Design N <i>M</i> _{Ed} = 27	10mer 73.6	nt kNm	
	Maximum shear force	imum shear force nearby beam support								
	$V_{\rm Ed} = \frac{F_{\rm d}L}{2} = \frac{60.8}{2}$	×6 =182	2.4 kN				Design S $V_{\rm Ed} = 18$	òhear 32.4 k	Force <n< th=""></n<>	

t	Example 02 Si	mply supported unrestrained beam	Sheet	2	of	6	Rev
u b j e c	6 1(1)	$\frac{Partial factors for resistance}{\gamma_{MO}} = 1.0$	-				
s S	NA 2.15	$\gamma_{M1} = 1.0$					
t I		Trial section	opertie	es of			
o c u m e n		457 × 191 × 98 UKB, 52	75				
of this d		$\begin{array}{c c} h & d & y - \cdot - y \\ \hline & & & \\ \hline & & & \\ \hline & & & \\ z & & \\ \end{array} \xrightarrow{r} & \underbrace{\psi^{t_{f}}}_{t_{f}}$					
U s e	P363	Depth of cross-section h = 467.2 mrWidth of cross-section b = 192.8 mrWeb depth between fillets d = 407.6 mr	n n n				
e d .		Web thickness t_w = 11.4 mmFlange thickness t_f = 19.6 mm					
θrv		Root radius $r = 10.2 \text{ mm}$ Section area $A = 125 \text{ cm}^2$					
r e s		Second moment, y-y I_y = 45700 cSecond moment, z-z I_z = 2350 cm	m ⁴ 4				
t s		Radius of gyration, z-z i_z = 4.33 cmWarping constant I_w = 1180000	⊃ cm ⁶				
rig h		Torsion constant I_t = 121 cm ⁴ Elastic section modulus, y-y $W_{el,y}$ = 1960 cmPlastic section modulus, y-y $W_{pl,y}$ = 2230 cm	3				
a –		Nominal yield strength, f_y of steelwork					
/ 2011 ight -	NA 2.4 BS EN 10025-2 Table 7	Steel grade = S275, Flange thickness of the section $t_f = 19.6 \text{ mm } 16 < t_f \leq$ Hence, nominal yield strength of the steelwork $f_y = 265$	40.0 N/mm²	mm	Yi fy	eld str = 26	ength 5 N/mm²
a r y r		Section Classification					
e b r u c o p		Following the procedure outlined in example 1 the cross e under bending is classified as Class 1.	ectior	1	Tł C	nis sec lass 1	tion is
а о		Bending Resistance of the cross-section					
ri a l	6.2.5 Eq.6.13	major axis $(y-y)$ for a class 1 section is:	out th	ie			
e d a t e		$\mathcal{M}_{c,Rd} = \mathcal{M}_{pl,Rd} = \frac{\mathcal{W}_{pl,Rd} f_{y}}{\gamma_{MO}}$					
e a i s t							

רב O⊢

_
Example 02 S	imply supported unrestrained beam Sheet 3	of <i>6</i>	Rev
6.2.5	$=\frac{2230 \times 10^{3} \times 265}{1.0} \times 10^{-6} = 591 \text{ kNm}$ $\frac{M_{\text{Ed}}}{M_{\text{Ed}}} = \frac{273.6}{0.46} = 0.46 < 1.00 \text{ OK}$	Design E Resistan <i>M_{c,Rd}</i> = 5	Bending Ice 191 kNm
Eq.6.12	M _{c,Rd} 591 Lateral torsional buckling resistance		
	Non-dimensional slenderness of an unrestrained beam		
6.3.2.2(1)	$\overline{\lambda}_{\rm LT} = \sqrt{\frac{W_{\rm y} \times f_{\rm y}}{M_{\rm cr}}}$		
	As BS EN 1993-1-1 does not include an expression for determining M_{cr} an alternative (conservative) method for determining $\overline{\lambda}_{LT}$ is used here. ¹⁾		
P 362 Expn (6.55)	$\overline{\lambda}_{LT} = \frac{1}{\sqrt{C_1}} O.9 \overline{\lambda}_z \sqrt{\beta_w}$		
P 362 Table 5.5	For a simply supported beam with a uniform distributed load, $\frac{1}{\sqrt{C_1}} = 0.94$		
	$\lambda_z = \frac{L}{i_z}$		
	$L = 6000 \text{ mm}^{2}$		
	$\lambda_z = \frac{L}{i_z} = \frac{6000}{43.3} = 138.6$		
6.3.1.3	$\pi \sqrt{\frac{E}{f_{y}}} = \pi \sqrt{\frac{210000}{265}} = 88.4$		
	$\overline{\lambda}_z = \frac{L}{i_z} \frac{1}{\lambda_1} = \frac{6000}{43.3} \frac{1}{88.4} = 1.568$		
	For Class 1 and 2 sections, $\sqrt{\beta_{w}} = \sqrt{\frac{W_{y}}{W_{pl,y}}} = \sqrt{\frac{W_{pl,y}}{W_{pl,y}}} = 1.0$		
	Hence, non-dimensional slenderness	slendern	ess
	$\overline{\lambda}_{LT} = \frac{1}{\sqrt{C_1}} 0.9 \overline{\lambda}_z \sqrt{\beta_w} = 0.94 \times 0.90 \times 1.568 \times 1.0 = 1.33$	$\overline{\lambda}_{LT} = 1$.33
		1	

- 1) The calculation of the elastic critical moment (M_{cr}) and thus a less conservative value of $\overline{\lambda}_{LT}$ is given at the end of this example.
- 2) Conservatively, for a simply supported beam, take the buckling length to equal the span length.

Example 02 Si	mply supported unrestrained beam	Sheet	4	of	6	Rev
	Reduction factor for lateral torsional buckling					
6.3.2.3	For rolled I or H section, the reduction factor for torsiona	al buck	ling			
	$\chi_{LT} = \frac{1}{\varPhi_{LT} + \sqrt{\varPhi_{LT}^2 - \beta \ \overline{\lambda}_{LT}^2}} but \qquad \chi_{LT} \le \frac{1}{\overline{\lambda}_{LT}^2}$					
	Where,					
	$\Phi_{\rm LT} = 0.5 \left[1 + \alpha_{\rm LT} \left(\overline{\lambda}_{\rm LT} - \overline{\lambda}_{\rm LT,O} \right) + \beta \overline{\lambda}_{\rm LT}^2 \right]$					
6.3.2.3	The value of $\bar{\lambda}_{LT,O} = 0.4$ (maximum value)					
NA 2.17	The value of $\beta = 0.75$ (minimum value)					
NA 2.17 Table 6.3	For rolled Section with $\frac{h}{b} = \frac{467.2}{192.8} = 2.42$ and $3.1 \ge 2.42$	42 >	2.0,			
	the buckling curve should be c , and imperfection factor $lpha_{L}$	r = 0.4	49			
	Hence, the value for $\boldsymbol{\varPhi}_{\mathrm{LT}}$ is:					
	$\boldsymbol{\Phi}_{\text{LT}} = 0.5 \left[1 + 0.49 \times (1.33 - 0.4) + 0.75 \times 1.33^2\right]$	= 1.3	891	4	$\mathbf{p}_{\mathrm{LT}} = 1$.391
Eq.6.57	Reduction factor					
	$\chi_{\rm LT} = \frac{1}{1.391 + \sqrt{1.391^2 - 0.75 \times 1.33^2}} = 0.461$					
	Check: $\chi_{LT} = 0.461 < 1.00$					
	$\chi_{LT} = 0.461 < 1/\overline{\lambda}_{LT}^2 = 1/1.33^2 = 0.565$					
	So, reduction factor, $\chi_{LT} = 0.461$			R	eductio	on factor,
	Modification of χ_{LT} for moment distribution			X		0.461
NA 2.18 P362	Correction factor due to UDL; $k_c = \frac{1}{\sqrt{C_1}} = 0.94$					
	$f = 1 - 0.5(1 - k_c)[1 - 2.0(\overline{\lambda}_{LT} - 0.8)^2]$ but ≤ 1.0					
	$= 1 - 0.5 \times (1 - 0.94)[1 - 2.0 \times (1.33 - 0.8)^{2}] = 0.987$					
6.3.2.3	Modified reduction factor				10dified	d Reduction
Eq.6.58	$\chi_{\rm LT,mod} = \frac{\chi_{\rm LT}}{f} = \frac{0.461}{0.987} = 0.467$			fa X	LT,mod	= 0.467
	Design buckling resistance moment of the unrestrained be	am				
6.3.2.1 Eq.6.55	$M_{b,Rd} = \chi_{LT} \frac{W_{pl,y} f_y}{\gamma_{M1}} = 0.467 \times \frac{2230000 \times 265}{1.0} \times 10^{-6} =$	276	kNm	B	uckling	Resistance 276 kNm
6.3.2.1 Eq.6.54	$\frac{M_{\rm Ed}}{M_{\rm b,Rd}} = \frac{274}{276} = 0.99 < 1.0 \text{ OK}$			B	uckling dequati	resistance e

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

Example 02 Si	mply supported unrestrained beam	Sheet	5	of	6	Rev
6.2.6.3	Shear Resistance The shear resistance calculation process is identical to ex- and is not repeated here. The calculated shear resistance, $V_{cRd} = 852$ kN, > 182 kN, O Adopt 457 × 191 × 98 UKB in 5275	ample K	1,			
Access-steel document SNOO3a-EN-EU	$\frac{\text{Calculation of the elastic critical moment }(M_{cr})}{\text{For doubly symmetric sections, }M_{cr} \text{ may be determined fro}}$ $M_{cr} = C_1 \frac{\pi^2 E I_z}{(kL)^2} \left\{ \sqrt{\left[\frac{k}{k_w}\right]^2 \frac{I_w}{I_z} + \frac{(kL)^2 G I_t}{\pi^2 E I_z} + (C_2 z_g)^2} - C_2 z_g \right\}$	m:				
3.2.6(1)	Where: $E = 2100000$ N/rModulus of elasticity $E = 2100000$ N/rShear Modulus $G = 81000$ N/rmDistance between lateral supports $L = 6000$ mmNo device to prevent beam end $k_w = 1$ from warping $Compression flange free to rotate$	mm ² 2				
SNOO3a Table 3.2	bout z-z For uniformly distributed load on a $C_1 = 1.127$, and simply supported beam $C_2 = 0.454$ Z_q is the distance from the load application to the shear cet the member. When loads applied above the shear centre and destabilising z is positive loads applied below the shear	entre c re	of e are			
	not destabilising, z_g is positive. Loads applied below the shear not destabilising, and z_g is negative. If loads are not desta this example), it is conservative to take z_g as zero. When k_g $k = 1$, and $z_g = $ zero, the expression for M_{cr} becomes: $M_{cr} = C_1 \frac{\pi^2 E I_z}{L^2} \left\{ \sqrt{\frac{I_w}{I_z} + \frac{L^2 G I_t}{\pi^2 E I_z}} \right\}$	centr bilisina √ and	e are g (as			
	$\frac{\pi^2 E I_z}{L^2} = \frac{\pi^2 \times 210000 \times 23500000}{6000^2 \times 10^3} = 1353 \text{ kN}$ $\frac{I_w}{I_z} = \frac{1180000}{2350} = 502.1 \text{ cm}^2$ $G I_v = 81000 \times 1210000 \times 10^{-9} = 98.01 \text{ kNm}^2$					
	$M_{cr} = 1.127 \times 1353 \times \left\{ \sqrt{0.05021 + \frac{98.01}{1353}} \right\}$ $M_{cr} = 534.0 \text{ kNm}$			Ma	_{er} = 53	34.0 kNm
6.3.2.2 Eq.6.56	Hence, Non-dimensional slenderness $\overline{\lambda}_{LT} = \sqrt{\frac{W_{\text{pl},y}f_y}{M_{cr}}} = \sqrt{\frac{2230000 \times 275}{534.0 \times 10^6}} = 1.07$			Sle J	enderr ⊤ = 1	.07

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

$ \begin{split} \varphi_{\rm tr} &= 0.5 [1 + 0.49 (1.07 - 0.4) + 0.75 \times 1.07^2] = 1.09 \\ \chi_{\rm T} &= \frac{1}{1.09 + \sqrt{1.09^2} - 0.75 \times 1.07^2} = 0.601 \\ f &= 1 - 0.5 (1 - 0.94) [1 - 2.0 (1.07 - 0.8)^2] = 0.974 \\ \chi_{\rm Linea} &= 0.60 / 0.974 = 0.617 \\ M_{\rm b5d} &= \chi_{\rm T} \frac{W_{\rm H} f_{\rm Y}}{T_{\rm M}} \\ &= 0.617 \times \frac{2230000 \times 265}{1.0} \times 10^{-6} = 365 \rm kNm \\ \text{This example demonstrates that the simple approach based on} \\ \bar{\lambda}_{\rm T} &= \frac{1}{\sqrt{C_1}} 0.9 \bar{\lambda}_{\rm x} \sqrt{\beta_{\rm w}} \ \text{ can produce significant conservatism} \\ \text{ compared to the } M_{\rm s} \ \text{ calculation process. } (276 \rm kNm \ \text{ compared to} \\ 365 \rm kNm \\ \text{No SLS checks are shown here; they are demonstrated in} \\ \text{Example 01.} \end{split} $

L

	7	Job No.				Sheet	1 of	10	Rev C
		Job Title	Example r	10. 03	3	Revised	l by D	GB, Ap	pril 09
SC		Subject	Simply su	ipport	ed compos	Bite seco	ondary	beam	
Silwood Park, Asco	ot, Berks SL5 7QN				,				
Telephone: (01344 Fax: (01344) 6365	Client			Made by	ВΚ	Date	Nov ()7	
CALCULATION	SHEET				Checked by	WT	Date	Dec	77
Unless stated	Simply supported c	omposite	e seconda	ary be	am				
otherwise all references are to BS EN 1994-1-1	This example shows the subject to UDL, at 3 deep with 1.0 mm ga to the steel beam. The of the composite bear shear and transverse	he design m centres luge <i>Com</i> le design m, the nu reinforce	of a G m I s. The com <i>Flor GO</i> (C checks inc mber of sh ment.	long c Iposite orus) I clude t Iear co	omposite b e slab is 13 running per he moment onnectors,	peam 30 mm pendicul resista vertical	lar nce		
See "Structural arrangement and loading"	Consider the second the typical floor.	ary compo	osite beam	betw	een @3 ar	nd CD or	n		
		├	300		\rightarrow				
	60 J	~	Þ	ſ		5			
	<u> </u>		120	$\overline{\mathbf{v}}$	180				
	Dim	Dimensions of <i>ComFlor 60</i> (Corus)							
	Design data								
	Beam span			L	= 6.0 m				
	Beam spacing			5	= 3.0 m				
	I otal slab depth	ou o profil		h h	= 130 mm	1			
	Depth of concrete at	ove prom	le	h	= 60 mm				
	Width of the bottom	of the tro	ouah	b _{best}	= 120 mn	n			
	Width of the top of th	ne trough	5.5	b _{top}	= 170 mn	n approx	(
	Shear connectors								
	Diameter			d	= 19 mm				
	Overall height before	welding		h _{sc}	= 100 mn	n			
	Height after welding				95mm				
BS EN	Materials								
1993-1-1	Structural Steel:								
NA 2.4 BS FN	For grade S275 and	maximum	thickness	(<i>t</i>) less	s than 16 i	nm			
10025-2	Yield strenath		f	= 2'	75 N/mm^2				
Table 7	Ultimate strength		$f_{\rm U}$	= 4	10 N/mm ²				
BS EN	Steel reinforcement:								
1992-1-1 Table C.1 BS 4449	Yield strength		f _{yk}	= 5	OO N/mm²				

BS EN 1992-1-1 Table 3.1	Normal weight concrete Density [These density values mathematical amount of steel reinforce Cylinder strength Secant modulus of elas Actions Concrete weight Self weight of the con $0.097 \times 26 \times 10^{-6} = 2$ $0.097 \times 25 \times 10^{-6} = 2$ Permanent actions	e strength <i>ny vary for a</i> <i>ement.]</i> sticity crete slab (2.52 kN/m ² 2.43 kN/m ²	class C25/30 26 kN/m ³ (wet) 25 kN/m ³ (dry) specific project depending $f_{ck} = 25 \text{ N/mm}^2$ $E_{cm} = 31 \text{ kN/mm}^2$ (volume from manufacture (wet) (dry)	n <i>on the</i> er's data)		
85 EN 1992-1-1 Table 3.1	Density [These density values ma amount of steel reinforce Cylinder strength Secant modulus of elas <u>Actions</u> <u>Concrete weight</u> Self weight of the con $0.097 \times 26 \times 10^{-6} = 2$ $0.097 \times 25 \times 10^{-6} = 2$ <u>Permanent actions</u>	y vary for a ement.] sticity crete slab (2.52 kN/m ² 2.43 kN/m ²	26 kN/m ³ (wet) 25 kN/m ³ (dry) specific project depending $f_{ck} = 25 \text{ N/mm}^2$ $E_{cm} = 31 \text{ kN/mm}^2$ (volume from manufacture (wet) (dry)	n <i>on the</i> er's data)		
	[These density values ma amount of steel reinforce Cylinder strength Secant modulus of elas <u>Actions</u> Concrete weight Self weight of the con $0.097 \times 26 \times 10^{-6} = 2$ $0.097 \times 25 \times 10^{-6} = 2$ Permanent actions	<i>ty vary for a ement.]</i> sticity crete slab (2.52 kN/m ² 2.43 kN/m ²	specific project depending $f_{ck} = 25 \text{ N/mm}^2$ $E_{cm} = 31 \text{ kN/mm}^2$ (volume from manufacture (wet) (dry)	<i>n on the</i> er's data)		
	Cylinder strength Secant modulus of elast Actions Concrete weight Self weight of the con $0.097 \times 26 \times 10^{-6} = 2$ $0.097 \times 25 \times 10^{-6} = 2$ Permanent actions	sticity crete slab (2.52 kN/m ² 2.43 kN/m ²	$f_{ck} = 25 \text{ N/mm}^2$ $E_{cm} = 31 \text{ kN/mm}^2$ (volume from manufacture (wet) (dry)	er's data)		
	Actions Concrete weight Self weight of the con $0.097 \times 26 \times 10^{-6} = 2$ $0.097 \times 25 \times 10^{-6} = 2$ Permanent actions	crete slab (2.52 kN/m ² 2.43 kN/m ²	ívolume from manufacture (wet) (dry)	r's data)		
	Concrete weight Self weight of the con $0.097 \times 26 \times 10^{-6} = 2$ $0.097 \times 25 \times 10^{-6} = 2$ Permanent actions	crete slab (2.52 kN/m ² 2.43 kN/m ²	(volume from manufacture (wet) (dry)	r's data)		
	Self weight of the con $0.097 \times 26 \times 10^{-6} = 2$ $0.097 \times 25 \times 10^{-6} = 2$ Permanent actions	2.52 kN/m ² 2.43 kN/m ²	volume from manufacture (wet) (dry)	r s data)		
	$0.097 \times 26 \times 10^{-6} = 2$ $0.097 \times 25 \times 10^{-6} = 2$ <i>Permanent actions</i>	2.52 kN/m² 2.43 kN/m²	(wet) (dry)			
	$0.097 \times 25 \times 10^{-6} = 2$ Permanent actions	2.43 kN/m²	(dry)			
	Permanent actions					
	Construction stage	kN/m²	Composite stage	kN/m²	Permanent	
	Steel deck Steel beam Total	0.11 <u>0.20</u> 0.31	Concrete slab Steel deck Steel beam	2.43 0.11 0.20	Construction $g_k = 0.31 \text{ kN}$ Composite st	stage: Vm² :age:
			Ceiling and services Total	<u>0.15</u> 2.89	g _k = 2.89 kN	√m²
	Variable actions				Variable	
BS EN	Construction stage	kN/m²	Composite stage	kN/m²	Construction	stage
NA 2.13	Construction loading ¹⁾ (1) Inside and outside working area (3) Concrete slab	the 0.75 <u>2.52</u>	Floor load (See structural arrangen actions)	3.30 nent and	$q_k = 3.27$ km Composite st $q_k = 3.30$ km	Vm age: Vm²
	Total	3.27				
	<u>Ultimate Limit State</u>					
	Combination of actions	5 for Ultima	te Limit State			
BS EN 1990	The design value of co	mbined act	ions are :			
NA 2.2.3.2	Construction stage:	95 X 1 35 X	() (31)+(1 5×3 27) =	5 29 kN/m ²	Construction	stage
Table NA A1.2(B)	Total load $F_d = 5$.	26×6.0×3	3.0 = 95.2 kN	J.LU KNUII	$F_d = 95.2 \text{ kN}$	1
	Composite stage: Distributed load (0.92	95×1 35×	289)+(15x33) = 8	56 kN/m ²	Composite st	aqe
	Total load $F_d = 8$.	56×6.0×1	3.0 = 153.0 kN		$F_{\rm d} = 153.0$	<n< td=""></n<>
1) Note that the BS EN 1991	e allowance of 0.75 kN/m ² -1-6.	is deemed a	appropriate in this example,	, in accordanc	ce with NA 2.1	3 of

BS EN 1991-1-6.

Example 03 S	mply supported composite secondary beam	Sheet	4	of	10	Rev
P363	Depth of cross-section h_a = 254.0 mWidth of cross-sectionb= 101.6 mDepth between filletsd= 225.2 mWeb thickness t_w = 5.7 mmFlange thickness t_f = 6.8 mmRadius of root filletr= 7.6 mmCross-section area A_a = 28 cm²[Note the subscript 'a' indicates the steel cross section. A sub-indicates concrete properties.]	nm nm nm s <i>cript</i>	<i>.c</i> ,			
	Plastic section modulus $(y-y)$ $W_{pl,y} = 259 \text{ cm}^{2}$	3				
BS EN	$t_{\rm f}$ < 16 mm, therefore $f_{\rm y}$ = 275 N/mm ²					
NA 2.4 BS EN 1993-1-1 3.2 6(1)	Modulus of elasticity $E = 210000$	N/mm ²				
0.2.0(1)	Section classification					
	The section is Class 1 under bending. ²⁾			Se	ection	is Class 1
	Note that other construction stage checks are not include example.	ed in th	115			
	Composite stage member resistance checks					
	Concrete					
BS EN 1992-1-1	Design value of concrete compressive strength $f_{cd} = \alpha_{cc}$:	$\times f_{ck}/r$	γ_c			
3.1.6	$\alpha_{cc} = 0.85$					
NA 2 Table NA 1	$f_{cd} = 0.85 \times 25 / 1.5 = 14.2 \text{ N/mm}^2$			f _{cd}	= 14	.2 N/mm²
	Compression resistance of concrete slab					
5.4.1.2	At mid-span the effective width of the compression flange composite beam is determined from:	of the				
	$b_{\rm eff} = b_{\rm O} + \sum b_{\rm ei}$					
	$b_{e_1} = \frac{L_e}{8} = \frac{L}{8} = \frac{6}{8} = 0.75 \text{ m} (L_e = L \text{ for simply supported } k$	peams))			
	Assume a single line of shear studs, therefore, $b_0 = 0$ m					
	$b_{eff} = 0 + (2 \times 0.75) = 1.50 \text{ m} < 3 \text{ m} (beam spacing)$			Eff b _{eff}	ective = 1.	width 50 m
6.2.1.2	Compression resistance of concrete slab is determined fro	om:		Cil		
	$N_{c,\text{slab}} = f_{cd} b_{eff} h_c$			De	esign c	compressive
	where h_c is the depth of the solid concrete above the dec	king		res	sistano =	ce of slab 1491 kN
	$N_{c,slab} = 14.2 \times 1500 \times 70 \times 10^{-3} = 1491 \text{ kN}$, °c,	SIAD	

2) See Example O1 for classification method.

Example 03 Si	mply supported composite secondary beam Sheet	5	of <i>10</i>	Rev
	Tensile resistance of steel section			
	$N_{\rm pl,a} = f_d A_a = \frac{f_y A_a}{\gamma_{\rm MO}}$		Design t resistanc	ensile ce of steel
	$N_{\rm pl,a} = \frac{275 \times 28 \times 10^2}{1.0} \times 10^{-3} = 770 \text{ kN}$		section $N_{\rm pl,a} = 7$	70 kN
	Location of neutral axis			
	Since $N_{\rm pl,a} < N_{\rm c,slab}$ the plastic neutral axis lies in the concrete flat	nge.		
	Design bending resistance with full shear connection			
6.2.1	As the plastic neutral axis lies in the concrete flange, the plastic resistance moment of the composite beam with full shear connec is:	tion		
	$M_{\rm pl,Rd} = N_{\rm pl,a} \left[\frac{h_a}{2} + h - \frac{N_{\rm pl,a}}{N_{\rm c,slab}} \times \frac{h_c}{2} \right]$		Design p	plastic
	$M_{\rm pl,Rd} = 770 \left[\frac{254}{2} + 130 - \frac{770}{1491} \times \frac{70}{2} \right] \times 10^{-3} = 1.84 \text{ kNm}$		resistance of composition $M_{\rm pl,Rd} =$	ce moment osite beam 184 kNm
	Bending moment at mid span $M_{y,Ed} = 114.8$ kNm			
	$\frac{M_{\rm y,Ed}}{M_{\rm pl,Rd}} = \frac{114.8}{184} = 0.62 < 1.0$			
	Therefore, the design bending resistance of the composite bean adequate, assuming full shear connection.	1 iS	Design b resistanc adequate	pending ce is e
	Shear connector resistance		,	
6.6.3.1	The design shear resistance of a single shear connector in a soli slab is the smaller of:	d		
	$P_{\rm Rd} = \frac{0.29 \alpha d^2 \sqrt{f_{ck} {\rm E}_{cm}}}{\gamma_{\rm v}} \qquad \text{and} \qquad$			
	$P_{\rm Rd} = \frac{0.8 f_{\rm u}(\pi d^2/4)}{\gamma_{\rm v}}$			
NA 2.3	$\gamma_{V} = 1.25$ for a single stud (see note on sheet 3)			
	$\frac{h_{5c}}{d} = \frac{100}{19} = 5.26$			
	As $\frac{h_{sc}}{d} > 4.0$ $\alpha = 1.0$			
	$P_{\rm Rd} = \frac{0.29 \times 1.0 \times 19^2 \sqrt{25 \times 31 \times 10^3}}{1.25} \times 10^{-3} = 73.7 \text{ kN}$			
	or $0.8 \times 450 \times (-10^2 / 4)$			
	$P_{\rm Rd} = \frac{0.0 \times 450 \times (\pi \times 19^{-7}/4)}{1.25} \times 10^{-3} = 81.7 \text{ kN}$			
	As 73.7 kN < 81.7 kN $P_{\rm Rd}$ = 73.7 kN			

Example 03 S	imply supported composite secondary beam Sheet 6	of 10	Rev
6.6.4.2	Influence of deck shape Deck crosses the beam (i.e. ribs transverse to the beam) One stud per trough, $n_r = 1.0$ Reduction factor		
Eqn 6.23	$k_{t} = \left(\frac{0.7}{\sqrt{n_{r}}}\right) \left(\frac{b_{0}}{h_{p}}\right) \left(\frac{h_{sc}}{h_{p}} - 1\right) \le 1.0$		
	For trapezoidal profiles, b_0 is the average width of a trough, taken here as (120 + 170) \div 2 = 145 mm		
	$k_{\rm t} = \left(\frac{0.7}{\sqrt{1}}\right) \times \left(\frac{145}{60}\right) \times \left(\frac{100}{60} - 1\right) = 1.13 \text{ but not more than } 1.0$		
	Therefore, as $k_t = 1.0$ no reduction in shear connector resistance is required. Therefore,	Design s resistanc	shear ce of a
	$P_{\rm Rd} = 73.7 \rm kN$	$P_{\rm Rd} = 73$	3.7 kN
	Number of shear studs in half span Use one shear connector per trough, therefore,		
	Stud spacing along beam = 300 mm		
	Centre line to centre line span of 3 m should be reduced to allow for the primary beam width or the column width (assume 254 mm). $n = \frac{3000 - (254/2)}{300} = 9$ stud shear connectors per half span	Provide trough, t stud she connecte	a stud per total 18 ear ors for the
	Degree of shear connection	WIDE SP	/411.
	Total resistance of 9 shear connectors		
	$R_q = 9P_{Rd} = 9 \times 73.7 = 663.3 \text{ kN}$		
	$\frac{R_{\rm q}}{N_{\rm pl,a}} = \frac{663.3}{770} = 0.86 < 1.0$	$\eta = 0.8$	6
	As this is less than 1.0, this beam has partial shear connection. Therefore, the minimum shear connection requirements must be checked, and the moment resistance reassessed.		

Example 03 Si	mply supported composite secondary beam	Sheet	7	of	10	Rev		
	Minimum shear connection requirements							
6.6.1.2	The minimum shear connection requirement is calculated fr	om:						
	(for $L_e < 25$ m):							
	$\eta \ge 1 - \left(\frac{355}{f_y}\right) (0.75 - 0.03L_e), \eta \ge 0.4$							
	For a simply supported beam, L_e is equal to the span.							
	$\eta \ge 1 - \left(\frac{355}{275}\right)(0.75 - 0.03 \times 6) = 0.26, \eta \ge 0.4$							
	Therefore the degree of shear connection must be at least 0.4. As shown above, there are a sufficient number of shear connectors to achieve this.							
6.2.1.3	Design bending moment resistance with partial shear con	nectioi	7					
	The design bending moment can conservatively be calculat	ted us	ing:					
	$\mathcal{M}_{Rd} = \mathcal{M}_{pl,a,Rd} + (\mathcal{M}_{pl,Rd} - \mathcal{M}_{pl,a,Rd})\eta$							
	$\mathcal{M}_{\mathrm{pl,a,Rd}}$ is the plastic moment resistance of the steel section	on:						
	$M_{\rm pl,a,Rd} = f_{\rm yd}W_{\rm pl,y} = 275 \times 259 \times 10^{-3} = 71.2 \text{ kNm}$							
	So the design bending moment resistance is:							
	$M_{\rm Rd} = 71.2 + (184 - 71.2) \times 0.86 = 168.2 \rm kNm$							
	Bending moment at mid span $M_{y,Ed} = 114.8$ kNm							
	$\frac{M_{\rm y,Ed}}{M_{\rm Rd}} = \frac{114.8}{168.2} = 0.68 < 1.0$							
	Therefore, the design bending resistance of the composit with partial shear connection is adequate.	e bear	n	Do re ac	esign b sistanc dequate	pending ce is e		
BS EN 1993-1-1 6.2.6(6)	Shear buckling resistance of the uncased web							
BS EN	For unstiffened webs if $\frac{h_w}{t} > \frac{72}{\pi}\varepsilon$ the shear buckling resi	stance	e of					
1993-1-5 5.1(2)	t η the web should be checked.							
	Where:							
	$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{275}} = 0.92$							
BS EN 1993-1-1	$\eta = 1.0$ (conservative)							
6.2.6(6)	$h_{\rm w} = h_{\rm a} - 2t_{\rm f} = 254 - (2 \times 6.8) = 240.4 \text{ mm}$			h	, = 24	0.4 mm		
	$\frac{72}{\eta}\varepsilon = \left(\frac{72}{1.0}\right) \times 0.92 = 66.2$							

Example 03 S	imply supported composite secondary beam	Sheet	8	of	10	Rev
	$\frac{h_{\rm w}}{t} = \frac{h_{\rm w}}{t_{\rm w}} = \frac{240.4}{5.7} = 42.2$					
	As $42.2 < 66.2$ the shear buckling resistance of the web need to be checked.	does	not	St	iear bu sistano	uckling ce check is
	Resistance to vertical shear			I NO	r requ	irea.
	Vertical shear resistance of the composite beam is:					
6.2.2.2	$V_{\text{pl,Rd}} = V_{\text{pl,a,Rd}} = \frac{A_{v}(f_{y}/\sqrt{3})}{\gamma_{\text{MO}}}$					
BS EN	For rolled I and H sections loaded parallel to the web:					
1993-1-1	$A_v = A - 2bt_{\rm f} + t_{\rm f}(t_{\rm w} + 2r)$ but not less than $\eta h_{\rm w} t_{\rm w}$					
0.2.0(0)	$A_{v} = 2800 - (2 \times 101.6 \times 6.8) + 6.8 \times [5.7 + (2 \times 7.6)]$					
	$A_{\rm v} = 1560 \text{ mm}^2$					
	η = 1.0 (Conservatively from note to 6.2.6(3))					
	$\eta h_w t_w = 1.0 \times 240.4 \times 5.7 = 1370 \text{ mm}^2$					
	$1560 \text{ mm}^2 > 1370 \text{ mm}^2$					
	Therefore, $A_v = 1560 \text{ mm}^2$					
	$V_{\text{pl,Rd}} = 1560 \times \frac{275}{\sqrt{3} \times 1.0} \times 10^{-3} = 247 \text{ kN}$			De sh V _P	esign v ear rei _{I,Rd} = 2	vertical sistance 247 kN
	$\frac{V_{\rm Ed}}{V_{\rm pl,Rd}} = \frac{76.5}{247} = 0.31 < 1.0$			De	esign r	esistance
	Therefore the design resistance to vertical shear is adequa	ate.		for ad	r vertio Iequato	cal shear is e
6.2.2.4	As there is no shear force at the point of maximum bending (mid span) no reduction (due to shear) in bending resistance required.	mom e is	ient		ŀ	
	Design of the transverse reinforcement					
	For simplicity, neglect the contribution of the decking and a resistance of the reinforced concrete flange to splitting.	check	the			
BS EN 1992-1-1	The area of reinforcement (A_{si}) can be determined using the equation:	e follo	wing			
6.2.4 (4)	$\frac{A_{\rm sf}f_{\rm yd}}{s_{\rm f}} > \frac{v_{\rm Ed}h_{\rm f}}{\cot\theta_{\rm f}} \text{ therefore, } \frac{A_{\rm sf}}{s_{\rm f}} > \frac{v_{\rm Ed}h_{\rm f}}{f_{\rm yd}\cot\theta_{\rm f}}$					

Example 03 Si	mply supported composite secondary beam	Sheet	9	of	10	Rev
6.6.6.4 (1)	where: $h_{\rm f}$ is the depth of concrete above the metal decking, there $h_{\rm f} = h_c = 70 \text{ mm}$ $S_{\rm f}$ is the spacing of the transverse reinforcement $f_{\rm yd} = \frac{f_{\rm y}}{\gamma_{\rm s}} = \frac{500}{1.15} = 435 \text{ N/mm}^2$	efore,				
6.6.6.1	For compression flanges $26.5^{\circ} \le \theta_f \le 45^{\circ}$ The longitudinal shear stress is the stress transferred from beam to the concrete. This is determined from the minimu resistance of the steel, concrete and shear connectors. example, with partial shear connection, that maximum force be transferred is limited by the resistance of the shear con- puter half of the snap and is around by $R = CC2.3$ kM	m the m In this e that onnect	stee can ors	:[
Figure 6.16	This force must be transferred over each half-span. As the shear planes (one on either side of the beam, running para the longitudinal shear stress is:	ere are allel to	e two it),			
BS EN 1992-1-1 6.2.4 (4)	$v_{Ed} = \frac{R_q}{2h_f \Delta x} = \frac{663 \times 1000}{2 \times 70 \times 3000} = 1.58 \text{ N/mm}^2$ For minimum area of transverse reinforcement assume $\theta = \frac{A_{sf}}{s_f} \ge \frac{v_{Ed}h_f}{f_{yd}\cot\theta_f} = \frac{1.58 \times 70}{435 \times \cot 26.5} \times 10^3 = 126.7 \text{ mm}^2/\text{m}$ Therefore, provide A193 mesh reinforcement (193mm ² /m slab. ³)	26.5) in the	0	U re	se A19 einforce	93 mesh ement
BS EN 1992-1-1 6.2.4 (4) BS EN 1992-1-1 NA 2 Table NA.1	$\frac{\text{Crushing of the concrete compression strut}}{\text{The model for resisting the longitudinal shear assumes construts form in the concrete slab}} \\ \text{Verify that:} \\ v_{\text{Ed}} \leq v f_{\text{cd}} \sin \theta_{\text{f}} \cos \theta_{\text{f}} \\ \text{where:} \\ v = 0.6 \left[1 - \frac{f_{\text{ck}}}{250}\right] \\ v = 0.6 \left[1 - \frac{25}{250}\right] = 0.54 \\ v f_{\text{cd}} \sin \theta_{f} \cos \theta_{f} = 0.54 \times 14.2 \times \sin 26.5 \times \cos 26.5 = 3.06 \\ v_{\text{Ed}} = 1.58 \text{ N/mm}^{2} < 3.06 \text{ N/mm}^{2} \\ \text{Therefore the crushing resistance of the compression struadequate.} \end{cases}$	npres DG N/n Jt is	5iOn 1m²			

3) If the contribution of decking is included, the transverse reinforcement provided can be reduced.

ļ	Example 03 Si	mply supported composite secondary beam	Sheet	10	of	10	Rev	
		Serviceability limit state						_
		Performance at the serviceability limit state should be veri However, no verification is included here. The National Anr country where the building is to be constructed should be for guidance.	fied. Iex for Consu	the lted				
		Considerations would be:						
		• Short-term, long-term and dynamic modular ratios						
		Serviceability combinations of actions						
		Composite bending stiffness of the beam						
		• Total deflection and deflection due to imposed loads						
		 Stresses in steel and concrete (to validate deflection assumptions) 						
		Natural frequency.						

	7	Job No.				Sheet	1 0	f 6	Rev	С			
		Job Title	Example r	10.04	1	Revise	d by [y DGB, April 09					
LISC		Subject	Edge bea	am									
Silwood Park, Asco	ot, Berks SL5 7QN												
Fax: (01344) 6365	570	Client Made by			MXT	Date	te Dec 2007						
CALCULATION	SHEET				Checked by	AB	Date	April	2007	7			
Unless stated otherwise all references are to BS EN 1993-1-1	<u>sion</u> beams is ds only. ⁻ nm to the sen memb	unrestraine The brickwo centroida ber is a RH	ed aloi ork loa l axis a S, wh	ng its lengt ad is applie and induces ich is excel	ch. It d with a torsio lent at	an n							
	Block RHS		Brick	o End d	etail	Д.							
	Actions												
	Permanent actions												
	Uniformly Distributed	Load (bri	ckwork)	<i>9</i> 1	= 4.8 kN/r	n							
	Uniformly Distributed	Load (blc Load	ockwork)	9 2	= 3.0 kN/r	11							
	(assumed self weight)			<i>9</i> 3	= 0.47 kN	I/m							
	<u>Ultimate Limit State</u>	(ULS)											
	Partial factors for act	ions											
BS EN 1990 A1.3.1(4)	For the design of stru actions, the partial fa state design should b National Annex	uctural me ctors for pe obtaine	embers not actions to ed from Tal	: involu be us ple A1	ving geoted and for ultir .2(B) and t	chnical nate lim the	it						
NA 2.2.3.2	Partial factor for pern	nanent ac	tions	γG	= 1.35								
Table NA.A1.2(B)	Reduction factor			ζ	= 0.925								
	Combination of action	is for ULS	9										
	This example uses BS should also be checked	EN 1990 ed, which	0 Equation may be mo	6.10 pre on	b. Express erous.	5ion 6.1	Oa						
BS EN 1990	UDL (total permanent)											
Table A1.2(B) \$ Eq. (6.10b)	$F_{d} = \xi \times \gamma_{G}(g_{1} + g_{2} + g_{3})$) kN/m											
, , , , , , , , , , , , , , , , , , , ,	$F_{d} = 0.925 \times 1.35 \times (4)$.8+3.0-	+0.47) = 1	0.33	kN/m								

Example 04 Ec	lge beam	Sheet	2	of	6	Rev
	UDL (permanent, inducing torsion) $F_{d,T} = \xi \times \gamma_G G_1 = 0.925 \times 1.35 \times 4.8 = 5.99 \text{ kN/m}$					
	Design moments and shear force Span of beam $L = 6000 \text{ m}$ Eccentricity of brickwork $e = 172 \text{ m}$ Maximum design bending moment occurs at the mid-span $M_{\text{Ed}} = \frac{F_d L^2}{8} = \frac{10.33 \times 6^2}{8} = 46.5 \text{ kNm}$ Maximum design shear force occurs at the supports $V_{\text{Ed}} = \frac{F_d L}{2} = \frac{10.33 \times 6}{2} = 31.0 \text{ kN}$	nm n		D m M D fc	esign oment Æd = esign brce	bending 46.5kNm shear
	Maximum design torsional moment occurs at the supports $T_{Ed} = \frac{F_{Ed,T} \times e \times L}{2} = \frac{5.99 \times 0.172 \times 6}{2} = 3.1 \text{ kNm}$ The design bending moment, torsional moment and shear diagrams are shown below.	force		V ₁ D m T _E	esign oment d = 3	31.0 kN torsional 3.1 kNm
	Hending mon 46.5 kNm 31.0 kN	nent				
	Shear force 31.0 kN 3.1 kNm					
	Torsional mo 3.1 kNm	ment				

Example 04 Ec	lge beam	Sheet	3	of	6	Rev
	Trial section					
P363	Try 250 \times 150 \times 8.0 RHS in S355 steel. The RHS is clunder the given loading.	ass 1				
	Depth of section $h = 250 \text{ m}$ Width of section $b = 150 \text{ m}$ Wall thickness $t = 8 \text{ mm}$ Plastic modulus about the y-axis $W_{pl,y} = 501 \text{ cm}$ Cross-sectional area $A = 6080$ St Venant torsional constant $I_T = 5020$ Torsional section modulus $W_t = 506 \text{ cm}$ Second moment of area about z-z axis $I_z = 2300$	m m cm ² cm ⁴ m ³ cm ⁴				
NA 2.4	For steel grade S355 and $t < 16$ mm					
BS EN 10210-1 Table A3	Yield strength $f_y = 355$ N	l/mm ²				
	Partial factors for resistance					
NA 2.15	$\gamma_{MO} = 1.0$					
	Resistance of the cross section Note that the following verification assumes that the maxi bending and torsion are coincident, which is conservative	mum sł	iear,			
6.2.6	$Plastic shear resistance$ $V_{pl,Rd} = \frac{A_v (f_y / \sqrt{3})}{\gamma_{MO}}$ Where $A_v = \frac{Ah}{(b+h)} = \frac{6080 \times 250}{(250+150)} = 3800 \text{ mm}^2$ $V_{pl,Rd} = \frac{3800(355/\sqrt{3})}{1.0 \times 10^3} = 779 \text{ kN}, > 28.5 \text{ kN}, \text{ OK}$					
6.2.6(6)	Shear buckling resistance					
	The shear buckling resistance for webs should be checked to section 5 of BS EN 1993-1-5 if:	d accor	rding			
Eq. 6.22	$\frac{h_{\rm w}}{t_{\rm w}} > \frac{72\varepsilon}{\eta}$					
Table 5.2	$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$					

	Example 04 Ec	lge beam	Sheet	4	of	6	Rev
	6.2.6(6)	$\eta = 1.0$ (conservative) $h_{\rm w} = h - 3t = 250 - 3 \times 8.0 = 226$ mm $h_{\rm w} = 226$					
		$\frac{1}{t_w} = \frac{1}{8.0} = 28.3$ $\frac{72\varepsilon}{\eta} = \frac{72 \times 0.81}{1.0} = 58$ $28.3 < 58$ Therefore the chean huckling resistance of the	a web				
	6.2.7	does not need to be checked. <i>Torsional resistance</i>	, wed				
		The torsional moment may be considered as the sum of tw effects:	inte	rnal			
	6.2.7(7)	$T_{Ed} = T_{t,Ed} + T_{w,Ed}$ But $T_{w,Ed}$ may be neglected for hollow sections					
		For a closed section, $T_{Rd} = \frac{T_y W_t}{\sqrt{3} \times \gamma_{MO}}$					
0		$= \frac{355 \times 506 \times 10}{\sqrt{3} \times 1.0} \times 10^{-6} = 103.7 \text{ kNm}$ 103.7 > 3.1, OK					
	6.2.7(9)	Shear and torsion					
	Eqn 6.25	$\frac{V_{\rm Ed}}{V_{\rm pl,T,Rd}} \le 1.0$					
		For a structural hollow section					
		$V_{\text{pl,T,Rd}} = \left[1 - \frac{\tau_{\text{t,Ed}}}{\left(f_{y} / \sqrt{3}\right) / \gamma_{\text{MO}}}\right] \times V_{\text{pl,Rd}}$					
		Shear stress due to torsion, $\tau_{t,Ed} = \frac{T_{t,Ed}}{W_t}$					
		$\tau_{t,Ed} = \frac{3.1 \times 10^6}{506 \times 10^3} = 6.1 \text{ N/mm}^2$					
		Then $V_{pl,T,Rd} = \left[1 - \frac{\iota_{t,Ed}}{\left(f_y / \sqrt{3} \right) / \gamma_{MO}} \right] \times V_{pl,Rd}$					
þ		$V_{\rm pl,T,Rd} = \left[1 - \frac{5.5}{(355/\sqrt{3})/1.0} \right] \times 779 = 758 \text{ kN}$					
		101.0 × 700, 0K					

Example O4 Edge beam Sheet 5 of 6 Rev 6.2.8(2) Bending and shear The shear force ($V_{Ed} = 31.0$ kN) is less than half the plastic shear resistance ($V_{pLRd} = 779$ kN), so no reduction in the bending resistance due to the presence of shear is required. 6.2.8(4) Bending, shear, and torsion The shear force ($V_{Ed} = 31.0$ kN) is less than half the plastic shear resistance accounting for torsional effects ($V_{pl,T,Rd} = 758$ kN), so ho~ = 0 and therefore the yield strength used in calculating the bending resistance need not be reduced. Bending resistance 6.2.5 Cross section resistance 6.2.5(2) The design resistance for bending for Class 1 and 2 cross-sections $M_{c,Rd} = M_{pl,Rd} = \frac{W_{pl,y}f_y}{\gamma_{MO}} = \frac{501 \times 10^3 \times 355}{1.0 \times 10^6} = 177.9 \text{ kNm}$ Design bending resistance, $M_{c,Rd}$ = 177.9 kNm 177.9 > 46.5, OK 6.3.2 Buckling resistance 6.3.2.2(4) For slendernesses $\overline{\lambda}_{LT} < \overline{\lambda}_{LT,O}$ lateral torsional buckling effects may be ignored. NA 2.17 $\overline{\lambda}_{\rm ITO} = 0.4$ The slenderness $\overline{\lambda}_{LT}$ is given by $\overline{\lambda}_{LT} = \sqrt{\frac{W_y \times f_y}{M_{er}}}$ 6.3.2.2(1) Access-steel For non-destabilising loads, and where warping is neglected, the document elastic critical moment for lateral-torsional buckling, M_{cr} is given by: SNOO3a-EN- $M_{cr} = C_1 \frac{\pi^2 EI}{L^2} \left\{ \sqrt{\frac{L^2 GI_{\tau}}{\pi^2 EI_{\tau}}} \right\}$ EU Where: is the modulus of elasticity ($E = 210000 \text{ N/mm}^2$) E G is the shear modulus $(G = 81000 \text{ N/mm}^2)$ is the second moment of area about the minor axis I, is the St Venant torsional constant F L is the beam length between points of lateral restraint Access-steel \mathcal{C}_1 accounts for actual moment distribution document C_1 = 1.127 (for simply supported beam with a UDL). SN003a Table 3.2

	-	Job No.			Sheet	1 c	of 4	Rev C
		Job Title	Example no. 05	5	Revised	d by [DGB, Ap	pril 09
	â	Subject	Column in Simp	le Constru	ction			
Silwood Park, Asc	ot, Berks SL5 7QN					1		
Fax: (01344) 636	570	Client		Made by	LG	Date	Dec 2	2007
CALCULATION	N SHEET			Checked by	PS	Date	Dec a	2007
Unless stated	Column in Simple Co	nstructio	<u>on</u>					
otherwise all references	Descript <u>i</u> on							
are to BS EN 1993-1- 1:2005	This example demonstr construction. Note th loads.	rates the lat the int	design of an int ernal columns do	ernal colum o not carry	n in sim _f roof	ple		
	Internal column at grou	und level	– Gridline G2					
	Column height = 5	5.0 m						
	Actions							
See structural	Reactions at each of t	he three	floor levels from	8 m span	beams:			
arrangement and actions	Permanent = C Variable = C).5 × 8 ×).5 × 8 ×	$x = 6 \times 3.7 = 88$ $x = 6 \times 3.3 = 75$	3.8 kN 9.2 kN				
	Reactions at each of t	he three	floor levels from	6 m span	beams:			
	Permanent = C Variable = C).5 × 6 ×).5 × 6 ×	$x = 6 \times 3.7 = 60 \times 6 \times 3.3 = 53$	6.6 kN 9.4 kN				
	The total load acting o	on the co	lumn due to thre	e floors is	given by	<i>'</i> :		
	Permanent G_k Variable Q_k	= 3 × ((88.8 + 66.6) (79.2 + 59.4)	= 466.2 k = 415.8 k	:N :N		$G_k = 46$ $Q_k = 41$	5.8 kN
	<u>Ultimate Limit State (L</u>	ILS)						
BS EN 1990	Partial factors for acti	ons						
Table AT(2)D NA 2 2 3 2	For permanent actions	,	Y _G	= 1.35 - 1.5				
Table	TOT VALIABLE ACTIONS		/Q	- 1.5				
NA.A1.2(B)	F = 0.925							
		, ,	r					
6.4.3.2	Design value of combined $= \xi v_0 G + v_0 Q$	ned actio	ns, from equatio	n 6.10b			[he S	avial
	$= 0.925 \times 1.35 \times$	466.2	+ 1.5 × 415.8	3 = 1206	kN	l	oad,	axial
						/	$N_{Ed} = 1$	206 kN
	The reaction from an 8	3 m beam	iS					
	0.925 × 1.35 × 88	.8 + 1.5	× 79.2 = 23	O kN				
	The reaction from an 6	m beam	15 x 59 1 - 17	2 KN				
	0.020 \ 1.00 \ 66	.6 T 1.3	x 50.4 - 17					

Example 05 C	olumn in Simple Construction	Sheet	2	of	4	Rev
6.1(1) NA 2.15	Partial factors for resistance $\gamma_{MO} = 1.0$ $\gamma_{M1} = 1.0$ Trial section Try 254 × 254 × 73 UKC, S275 $\downarrow \qquad \qquad$					
SCI P363	Depth h = 254.1 mWidth of cross-section b = 254.6Flange thickness $t_{\rm f}$ = 14.2 mmWeb thickness $t_{\rm w}$ = 8.6 mmRadius of gyration i_z = 6.48 cmSection area A = 93.1 cmPlastic modulus, y-y $W_{\rm pl, y}$ = 992 cm	mm mm n n ² 3				
NA 2.4 BS EN 10025-2 Table 7 P363	Yield Strength, f_y Steel grade = 5275 Nominal thickness of the element, $t \le 16$ mm then $f_y = 3$ Section classification Cross-section is assumed to be at Class 1 or 2. (no UKC is Class 4 under compression alone; only a 152 pat alors 2 or bottom under here data along in 6275)	275 N/ UKC 2	′mm² З is			
Access Steel document SNOO8a-EN- EU Access Steel document SNOO5a-EN- EU	Buckling lengths Buckling length about y-y axis Buckling length about y-y axis Buckling length about z-z axis $L_{cr,z} = 5.0 \text{ m}$ Design moments on column due to beam reactions For columns in simple construction the beam reactions are to act at 100 mm from the face of the column. In the minor axis, the beam reactions at internal columns a and hence there are no minor axis moments to be consider	e assum re iden ered.	ned Itical			

Example 05 C	Solumn in Simple Construction Sheet 4	of 4	Rev
6.3.2.3	$\overline{\lambda}_{LT,O} = O.4$		
NA 2.17	$\beta = 0.75$		
Table 6.5	For rolled bi-symmetric I-sections with $h/b \leq 2$: use buckling curve 'b'.		
Table 6.3	For buckling curve 'b', $\alpha_{LT} = 0.34$		
	$\phi_{LT} = 0.5(1 + 0.34(0.80 - 0.40) + 0.75 \times 0.80^2) = 0.81$		
	$\chi_{LT} = \frac{1}{0.81 + \sqrt{0.81^2 - 0.75 \times 0.80^2}} = 0.81$		
6.3.2.3	But the following restrictions apply:		
	$\chi_{LT} \leq 1.0$		
	$\chi_{\rm LT} \le \frac{1}{\bar{\lambda}_{\rm LT}^2} = \frac{1}{0.80^2} = 1.56$		
	$\therefore \chi_{1T} = 0.81$		
6.3.2.1(3)	$M_{\rm b,Rd} = \frac{\chi_{\rm LT} W_{\rm y} f_{\rm y}}{\gamma_{\rm M1}} = \frac{\chi_{\rm LT} W_{\rm pl,y} f_{\rm y}}{\gamma_{\rm M1}} \text{ for Class 1 or 2 cross-sections}$		
	$=\frac{0.81\times992\times275\times10^{-3}}{1.0}=221$ kNm	$M_{\rm b,Rd} =$	221 kNm
SNO48a-EN-	Combined bending and axial compression buckling (simplified)		
GB Access Steel	Instead of equation 6.61 and 6.62, the simplified expression given below is used:		
Cocoment	$\frac{N_{\text{Ed}}}{N_{\text{bz,Rd}}} + \frac{M_{\text{y,Ed}}}{M_{\text{b},\text{Rd}}} + 1.5 \frac{M_{\text{z,Ed}}}{M_{\text{z},\text{Rd}}} \le 1.0$		
	$\frac{1206}{1562} + \frac{6.6}{221} + 0 = 0.80 \le 1.0$		
	Therefore a 254 × 254 × 73 UKC is adequate.	Section 254×25 UKC, Sá	used is 54x73 275

	7	Job No.			Sheet	1 of	5	Rev	С
		Job Title	Example no. Of	<u>,</u>	Revised	by D	GB, Af	pril 09)
LSC	â	Subject	Roof Truss						
Silwood Park, Asc	ot, Berks SL5 7QN					1			
Telephone: (01344) Fax: (01344) 636	4) 636525 570	Client		Made by	LYL	Date	te Nov 07		
CALCULATION	I SHEET			Checked by	IB	Date	Jan 2	008	
BS EN 1991-	Roof Truss								
1-1 Tables (-9 #	The truss to be desig	ned is to	support a roof v	which is on	ly				
6.10	accessible for normal	maintenar The dimen	ice and repair. T	he truss is	14 m				
	figure below. The imp	osed roof	load due to sno	ow obtained	d from				
NA 2.10	BS EN 1991-1-3 is l	ess than (d roof loa	0.6 kN/m², there	fore the 35 FN 199	91-1-1 ;	and			
Table NA 7	the National Annex. Th	ie truss u	ses hollow secti	ons for its	tension				
	chord, ratters, and in Truss analysis is carrie	ternal mer ed out by	nbers. The trus: placing concent	s is fully we rated load:	elded. 5 at the				
	joints of the truss. A	Il of the j	oints are assume	d to be pir	nned in t	he			
	analysis and therefore	e only axia	l forces are carr	iea by men	ibers.				
Unless stated	_		F _d	_					
references				F _d	E 10				
are to BS EN 1993-1-1	15°	30°		G					
	A 3500 C	¥ 3500	E	3500	Н				
	<	64	≪ → → ⁹⁸ → ◆	3751	\rightarrow				
	Characteristic actions	5							
	Permanent actions								
	Self weight of roof co	onstructio	n 0.75	kN/m²					
	Self weight of service	:5 ms	<u>0.15</u> 0.90	kN/m² kN/m²					
			0.00	K NY TH					
	Variable actions		0.60	kNl/m ²					
	Total imposed action		0.60	kN/m ²					
	<u>Ultimate Limit State (l</u>	JL <u>S)</u>							
NA 2.2.3.2	Partial factors for act	ions							
Table NA A1 2(B)	Partial factor for perm	nanent act	tions $\gamma_{\rm G}$ =	1.35					
· · · · · · · · · · · (U)	Partial factor for varia	ble actior	is γ_G =	1.5					
	Reduction factor		ξ =	0.925					
	Design value of comb	ined actic	ons, using equation	on 6.10b					
	= 0.925 × 1.35 ×	0.9 + 1.	$5 \times 0.6 = 2.0$	02 kN/m²					

Discuss me ... Example OG Roof truss Sheet 2 of 5 Rev Design values of combined actions on purlins supported by truss For the distance of 3.5 m between purlins centre to centre Design value = $2.02 \times 3.5/\cos 15^\circ$ = 7.32 kN/m Design value of combined actions on truss For a purlin span of 6 m $F_d = 7.32 \times 6 = 43.92 \text{ kN}$ $F_{\rm d} = 43.92 \, \rm kN$ Truss analysis (due to forces F_d) Reaction force at support A $R_A = 2 \times F_d = 87.8 \text{ kN}$ At joint A $F_{AB} \times \sin 15^\circ + (R_A - M_2) = 0$ $F_{\rm AB} = -255 \ \rm kN$ $F_{AB} \times cos15^\circ + F_{AC} = 0$ $F_{\rm AC} = 246$ kN At joint B $F_{\rm BC} + W \times \cos 15^\circ = 0$ $F_{\rm BC} = -42 \text{ kN}$ $F_{\rm BD} = -243 \text{ kN}$ $F_{\rm BD}$ - $F_{\rm AB}$ - $W \times \sin 15^\circ = 0$ $F_{\rm BC} \times \sin 75^\circ + F_{\rm CD} \times \sin 30^\circ = 0$ $F_{\rm CD} = 82 \text{ kN}$ At joint C $F_{\rm CE} - F_{\rm AC} - F_{\rm BC} \times \cos 75^\circ + F_{\rm CD} \times \cos 30^\circ = 0$ $F_{\rm CE} = 164$ kN Partial factors for resistance = 1.06.1(1) γ_{MO} NA 2.15 = 1.0 γ_{M1} = 1.25γ_{M2} $N_{\rm Ed} = 255 \text{ kN}$ Design of Top Chords (members AB, BD, DG, GH) Maximum design force (member AB and GH) = 255 kN(compression) Try 100 \times 100 \times 5 square hollow section in S355 steel NA 2.4 Material properties: modulus of elasticity $E = 210000 \text{ N/mm}^2$ BS EN 10210-1 steel grade S355 and thickness \leq 16 mm Yield strength $f_{\rm v} = 355 \, \text{N/mm}^2$ Table A3 $\varepsilon = \sqrt{\frac{235}{f_v}} = \sqrt{\frac{235}{355}} = 0.81$ P363 Section properties: Depth and width of section h, b = 100 mmThickness t = 5 mm $i_z = 38.6 \text{ mm}$ Radius of gyration $= 1870 \text{ mm}^2$ Area A

Example OG Ro	oof truss	Sheet	3	of	5	Rev
Table 5.2	Classification of the cross-section:					
	$c = 100 - 3 \times 5 = 85 \text{ mm}$					
	$\frac{c}{t} = \frac{85}{5} = 17$					
	Class 3 limit = $42e = 42 \times 0.81 = 34$.					tion is at
	17 < 34, so the section is at least class 3			le	ast C	lass 3
Eq.(6.10) for	Compression resistance of the cross-section:					
Class 3 sections	$N_{c,Rd} = \frac{Af_y}{\gamma_{MO}} = \frac{1870 \times 355 \times 10^{-3}}{1.0} = 663 \text{ kN}$					
	$\frac{N_{\rm Ed}}{N_{c,\rm Rd}} = \frac{255}{633} = 0.40 < 1.0$					
	Therefore, the compressive design resistance is adequate	2.		N	(c,Rd >	$N_{\rm Ed}$
Eq.(6.50) for	Flexural buckling resistance:					
Class 1,2 and 3 cross-	Determine the non-dimensional slenderness for flexural buc	ckling:				
sections	$\overline{\lambda}_{z} = \sqrt{\frac{Af_{y}}{N_{cr}}} = \frac{L_{cr}}{i_{z}} \frac{1}{\lambda_{1}}$					
	where $L_{cr} = 1.0 \times L_{AB} = \frac{3500}{\cos 15^{\circ}} = 3623 \text{mm}$					
	$\lambda_1 = \pi \sqrt{\frac{E}{f_y}} = \pi \sqrt{\frac{210000}{355}} = 76.4$					
	$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \frac{L_{cr}}{i_z} \frac{1}{\lambda_1} = \frac{3623}{38.6} \frac{1}{76.4} = 1.23$					
Eq.(6.49) and	Determine the reduction factor due to buckling					
Tables 6.1 and 6.2	$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}}$					
	where: $\boldsymbol{\Phi} = 0.5 \left[1 + \alpha (\overline{\lambda} - 0.2) + \overline{\lambda}^2 \right]$					
	$\alpha = 0.21$ (use buckling curve 'a' for a SHS)					
	$\Phi = 0.5 [1 + 0.21(1.23 - 0.2) + 1.23^2] = 1.3$	36				
	$\chi_z = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} = \frac{1}{1.36 + \sqrt{1.36^2 - 1.23^2}} = 0.52$					
	$N_{b,Rd} = \frac{\chi_z A f_y}{\gamma_{M1}} = \frac{0.52 \times 1870 \times 355 \times 10^{-3}}{1.0} = 345 \text{ kN}$					

Example 06 Ro	oof truss	Sheet	4	of	5	Rev
	$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{255}{345} = 0.71 < 1.0, \rm OK$					
	Therefore, the design flexural buckling resistance of the se	elected	d			
	$100 \times 100 \times 5$ SHS is satisfactory.					۸/
	Design of bottom chords (members AC, CE, EH)				b,Rd -	∕v _{Ed}
	Maximum design force (member AC and EH) = 246 kN (in	tensio	n)			
	The bottom chord will also be a $100 \times 100 \times 5$ SHS, S inspection, the design tension resistance is equal to the c plastic resistance of the cross section.	355. design	Ву	N	_{Ed} = 2	46 kN
Eq.(6.6)	$N_{\text{pl,Rd}} = \frac{Af_{\text{y}}}{\gamma_{\text{MO}}} = \frac{1870 \times 355 \times 10^{-3}}{1.0} = 663 \text{ kN}$					
	663 kN > 246 kN, OK			N	, a Ra >	NEd
	Design of internal members (members BC, EG, CD, D	E)			рі, қа	La
	Maximum design compression force (BC and EG) = 42 kl Maximum design tension force (CD and DE) = 82 kN Maximum length in compression is BC and EG = 970 mm	N			e _{ed} = 4	2 kN
	Try a 70 × 70 × 5 SHS, in S355 steel.					
	Following the same design process as above, the following resistances can be calculated:	9				
	Flexural buckling resistance (L_{cr} = 970mm), $N_{b,Rd}$ = 419 k	Ν				
	Tension resistance, $N_{\rm pl,Rd}$ = 450 kN					
	Thus all internal members will be selected as					
	70 \times 70 \times 5 SHS, in S355 steel.					
BS EN 1993-	Serviceability limit state (SLS)					
1-1 NA 2.23	The UK National Annex provides suggested limits for vertic horizontal deflections. The National Annex also states that deflections should be checked under unfactored variable le that permanent loads should not be included.	cal and the oads a	ind			
	Partial factors for actions					
	Partial factor for variable actions $\gamma_G = 1.0$					
	Design value of combined actions					
	= 1.0 × 0.6 = 0.6 kN/m ²					
	Design value of combined actions on truss					
	$= 6 \times 0.6 \times 3.5/Cos 15^{\circ} = 13.0 \text{ kN}$			F	, = 13	3.0 kN

1	Example 06 Roof t	truss	Sheet	5	of	5	Rev
cument is subject to the terms and conditions of the Steelbiz Licence Agreement	Example OG Roof t De The Sp The con was pin Ca The this sec gen that as sho Joi ap; the the the the the the the the	Effection e maximum allowable deflection is assumed to be span/30 e maximum deflection of the truss is obtained for the SL mbined actions (i.e. $F_d = 13.4$ kN). The deflection at the s found to 6.4 mm when all of the joints are assumed to ined. Deflection is therefore satisfactory. Example: e design of the connections is not shown in this example is is particularly important for trusses fabricated from ho citions. The joint resistances depend on the type of join ometry of the joint and the forces in the members. It is at the joints in hollow section fabrications can carry as in the members themselves, without expensive strengthen ould be avoided. Int resistance should be checked at the design stage, s propriate members can be chosen to ensure that in add e members forces without strengthening. e design of hollow section joints is covered in BS EN 15	Sheet OO; S value e apex b be e, althout t, the unlikel nuch lc ing, wi tion to transf 993-1	5 e of ough yoad hich -8	of	5	Rev
I. Use of this document is subject to the terms and conditions of the Steelbiz Lice							
s material is copyright - all rights reserved.							

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

Р	3 8	7 : S	S t	e e	I	В	u	i	I.	
	<u>i</u> s	C U S S	;	m e	•		•			
			Job No.			Sheet	1 0	F 2	Rev C	
			Job Title	Example no. (07	Revise	ed by D	d by DGB, April 09		
>		Î	Subject	Choosing a s	teel sub-gra	de				
_	Silwood Park, Asc	ot, Berks SL5 7QN								
۲ ۲	Fax: (01344) 636	570	Client		Made by	LPN Date May		May a	2007	
σ	CALCULATION	I SHEET			Checked by	MEB	Date	Jan 2	008	
٩	Unless	Choosing a steel su	<u>b-grade</u>							
э 0	stated otherwise all	Introduction								
Ŭ	references	Determine the steel s	ub-grade	that may be u	sed for the s	simply				
- 0	are to BS EN 1993-1-10	supported restrained S275).	beam (UK	(B 457 x 191	x 82 steel	grade				
٩		The example follows th	henness	lung nacommo	ided in					
		PD 6695-1-10. This	published	document pro	ovides non c	onflictir	ig			
U U U		complimentary informa	ation to th	e Eurocode, a	and presents	a				
		Straightforward appro	ach lo lh		eel Sud-grad	е.				
ш.,		Floor beam at Level 1	' – Gridlind	e G1-2						
		Beam span, Bav width.	L = 8 w = 6	3.0m S.Om						
° _		Actions Permanent action		3.7 kN/m^2						
		Variable action :	$g_k = 3$ $g_k = 3$	3.8 kN/m ²						
o a	SCI P363	Section Properties								
		From example 01:								
		Web thickness	$t_{\rm w} = \Theta$	9.9 mm						
<u> </u>		Flange thickness Elastic modulus, y-y	$t_{\rm f} = 1$ $W_{\rm elv} =$	6.0 mm = 1610.9 cm ³	3					
		Yield strength	$f_{\rm v} = 2$	275 N/mm ²						
00	Combination of actions									
÷	2.2.4 (i)	Effecte are combine	d accord	ling to the fo	llowing eve	Peccion				
		$F = F \int A[T] = T$		$\mu O = + \nabla$		29910[1	•			
ס ס	BS EN 1990	$L_d = L [A_l]_{Ed} +$	Δ0 _K τ	$\psi_1 \psi_{K1} \top Z$	for this evan	iple ac				
	NA 2.2.2			there is only	one variable	action				
ΦE	Table	where $\psi_1 = 0.5$ (Category B: Office areas)								
÷	NA.A1.1	It is assumed that the	ere are no	locked in stre	esses due to					
		temperature, since be $A[T_{E_i}] = 0$	olts in clea	arance holes a	re used. The	refore				
o σ										
		Design value of comb.	ined actic	- 11 4 LNU/						
—· Ф		$\omega_{K1} + \psi_1 \ \omega_K = 0.5 \ X$	J.U X 6	— 11.4 KN/M						
<u> </u>										

Example 07 Cł	noosing a steel sub-grade Sheet 2	of <i>2</i>	Rev
	Maximum moment at mid span :		
	$M_{y,Ed} = 11.4 \times 8^2 / 8 = 91.2 \text{ kNm}$		
	Design moment diagram Bending moment 91.2 kNm		
	Calculation of maximum bending stress:		
	$\sigma_{\rm Ed} = \frac{M_{\rm y, Ed}}{W_{\rm el, y}} = \frac{91.2 \times 1000}{1610.9} = 56.6 \text{N/mm^2}$		
2.3.2	Stress level as a proportion of nominal yield strength $f_y(t)$ may be taken as the minimum yield strength from the product Standard, and is in this example.		
BS EN 10025-2 Table 7	The flange is 16 mm thick $f_y(t) = 275 \text{ N/mm}^2$ $\sigma_{\text{Ed}} = \frac{56.6}{275} f_y(t) = 0.20 f_y(t)$		
	For steel internal steelwork in buildings, the limiting thickness is taken from Table 2 of PD 6695-1-10		
	It is assumed that the Detail type is "welded – moderate"		
	Conservatively choosing "Comb.6" ($\sigma_{Ed}/f_y(t) = 0.3$)		
PD 6695-1- 10 Table 2	S275JR gives a limiting thickness of 50 mm, > 16 mm, OK.	Steel s S275JF adequat	ub-grade R is te.

1) The floor slab should be designed for both the construction stage and the composite stage. During the construction stage, the metal decking acts as formwork and has to support its own weight, wet concrete, and construction loads. The resistance of the metal decking during the construction stage needs to be verified at the ultimate and serviceability limit state

t	Example 08 Co	omposite slab			Sheet 2	of 7	Rev
ပ ၈		Floor slab and matery	al properties	5			
		Total denth of clab		h = 130	mm		
р л				// = 150	111111		
S		Corus profiled steel s	sheetina CF6	50			
S		Thickness of profile		t = 1.0	mm		
		Depth of profile		h = 60 r	nm		
+		Span		$l_{p} = 3 \text{m}$			
с ө		Effective cross-section	nal area of t	the profile $4 = 142$	$4 \text{ mm}^2/\text{m}$		
ε		Second moment of ar	rea of the pri	of $I = 106$	$15 \text{ cm}^{4}/\text{m}$		
⊐ 0		Yield strength of the	profiled dec	f = 350	N/mm^2		
0		from manufacturer's	pronieu uce lata:	r i _{yp} = 000			
σ		Decian value of bendu	na recictanc	e (caacina)			
S		Design value of Denan	119 1 CSIStalici	c (saggilig) M — 11.2	7 KNm/m		
 ب		Height of neutral avic	shave coffit	$M_{Rd} = 11.2$	mm		
+			above some		11111		
-	BS EN	Concrete					
0	1992-1-1	Normal concrete stre	nath class C	25/30			
O ()	Table 3.1				-)		
□	BS EN	Density (normal weigh	it, reinforced	$26 \text{ kN/m}^3 \text{ (We)}$	-) -)		
	1991-1-1 Tololo A 1	These density walking m	a cura chara	25 KIV/M3 (ary)		
σ	Table A. I	amount of steel reinford	ay vary tor a : cement.1	specific project aepenaing	ON LNE		
0 >		Cylinder strength		$f_{ck} = 25 \text{ N/mr}$	1 ²		
с.		Modulus of elasticity		$E_{cm} = 31 \text{ kN/m}$	m ²		
o v				Cini ,			
Ο		Actions					
-		Concrete weight					
t s		Self weight of the cor	ncrete slab (volume from deckina mar	ufacturer's		
ے		data)					
		$^{\prime}$	- 2 52 LNU	m^2 (mot)			
-		0.037 × 26 × 10	- 2.32 KIN	(wel)			
_		0.097 × 25 × 10 ⁻	= 2.43 kN/	m² (dry)			
σ		Permanent Actions					
÷.,			1 N 1/1-2	Companya	1.01/2	Carabara	
t 1		Construction stage	KIN/ffi	Composite stage	KIN/ffi	a = 0	1015lage:
°∧-⊂		Steel deck	<u>0.11</u>	Concrete slab	2.43	$g_k = 0.$	
>:- 0		Total	0.11	Steel deck	0.11	Composit	e stage:
د م ۲				Ceiling and services	0.15	$g_k = 2.$	69 KIVIII
 ⊐ ط				lotal	2.69		
		Variable actions					
Φ		At the construction s	tage the los	adina considered is a 0	75 kN/m2		
ш. 		load across the entire	e slab. with a	an additional 0.75 kN/m^2	load		
°°_		across a 3 m span, w	hich can be	positioned anywhere on	the slab		
ø [○]		span. In this case the	span is 3 m	, and so the constructio	n loading		
<u> </u>		across the whole spa	n is 1.50 kN	l/m²			
t e							
a c							
t T							
ω ^ω							

i.e P∟ HC

Example 08 Co	omposite slab			Sheet 3	of 7	Rev
BS EN 1991- 1-G NA 2.13	Construction stage Construction loading (1) Outside the working area (2) Inside the working area (addition (3) Concrete slab Total	kN/m ² 0.75 al) 0.75 <u>2.52</u> 4.02	Composite stage Imposed floor load (See structural arrange loading)	kN/m² 3.30 ement and	Construc g _k = 4 Composi g _k = 3	tion stage: .02 kWm ² te stage: .30 kWm ²
BS EN 1990 NA 2.2.3.2 Table NA.A1.2(B) BS EN 1990 Eqn. 6.10b	Ultimate Limit State (I. Partial factors for action Partial factor for permit Partial factor for varial Reduction factorCombination of actions The design values may more onerous of expression 6.1Design value of combination stage: Distributed load (0.92)Distributed load (0.92)Design moment and Construction Stage: Distributed load (0.92)Distributed load (0.92)Design moment and Construction Stage: Distributed load (0.92)Distributed load (0.92)Design moment and Construction Stage The design bending m $\mathcal{M}_{Ed} = \frac{F_d L^2}{8} = \frac{6.17 \times 3}{8}$ The design shear force $V_{Ed} = \frac{F_d L}{2} = \frac{6.17 \times 3}{2}$ Normal Stage The design shear force $\mathcal{M}_{Ed} = \frac{F_d L^2}{8} = \frac{8.31 \times 3}{8}$ The design shear force $\mathcal{N}_{Ed} = \frac{F_d L}{2} = \frac{8.31 \times 3}{8}$	JLS) ons anent actions be actions at ULS be calculated ession 6.10a Ob is demons ned actions = 25 × 1.35 × 0 25 × 1.35 × 2 shear force oment per meta a^2 = 6.94 k e per metre v a^2 = 9.26 kN/ oment per meta a^2 = 9.35 kN e per metre v a^2 = 13.07 kN/r	$y_{G} = 1.35$ $y_{Q} = 1.5$ $\xi = 0.925$ d using expression 6.1 and 6.10b. In this exa strated. $= \xi \gamma_{G} g_{k} + \gamma_{Q} q_{k}$.11)+(1.5×4.02) = 6 .69)+(1.5×3.3) = 8. etre width of the steel etre width of the steel deck m etre width of the steel deck m	O, or the ample, the 5.17 kN/m ² deck is: . is: . is:	Construct $F_d = 6.1$ Composit $F_d = 8.3$ $M_{Ed} = 6.1$ $V_{Ed} = 9.1$ $M_{Ed} = 9.1$ $M_{Ed} = 1.3$	tion stage 7 kV/m² te stage 31 kV/m² .94 kNm/m 26 kV/m .35 kNm/m .35 kNm/m

Example 08 Co	mposite slab		Sheet	4	of 7	Rev	
BS EN 1993-	Partial factors for resistance						
1-1 NA 2.15	Structural steel MM	_o = 1.0					
BS EN	Concrete Y _C	= 1.5					
1992-1-1	Reinforcement γ_5	= 1.15					
NA 2 Table NA. 1	Longitudinal shear 🏻 🥀	ə = 1.25					
	Design values of material strengths						
	Steel deck						
	Design yield strength $f_{yp,d} = \frac{f_{yp}}{\gamma_{MO}} = \frac{350}{1.0}$						
	Concrete						
1992-1-1	Design value of concrete compressive strer	$\operatorname{igtri} r_{cd} = \alpha_{cc} \gamma$	× Γ _{ck} / γ _c				
NA 2 Table NA 1	$\alpha_{cc} = 0.85$	f = 1/	$2 \mathrm{N}/\mathrm{mm}^2$				
TADLE NA. I	$f_{cd} = 0.85 \times 25/1.5 = 14.2 \text{ N/mm}^2$				$I_{cd} = 14$.		
BS EN	Verification at the construction stage						
6.1.1	Bending resistance						
	$\frac{M_{\rm Ed}}{M_{\rm Rd}} = \frac{6.94}{11.27} = 0.62 < 1.0$						
	Therefore the bending moment resistance a is adequate						
	Shear resistance and bearing resistance						
	Procedures are set out in BS EN 1993-1-3 6.1.7.3. In practice, design is normally carried out by using load-span tables or by using						
	software, which are based on testing, not c practice avoids certain failure modes.						
	<u>Serviceability Limit State (SLS)</u>						
	Construction Stage Deflections						
9.3.2(2)	Deflection without ponding	2					
	At serviceability, loading = $0.11 + 2.52 = 2.63 \text{ kN/m}^2$						
	$\delta_{s} = \frac{5F_{d}L^{4}}{384EI} = \frac{5 \times 2.63 \times 3^{4}}{384 \times 210 \times 106.15 \times 10^{5}}$						
	As this is less than 10% of the slab depth is the additional concrete may be ignored in t sheeting.						
NA 2.15	$\delta_{\rm s,max}$ = 4180 but 20mm max where the load ignored.	ds from pondin	ig are				
	$\delta_{\rm s,max}$ = 3000/180 = 16.6 mm, OK						
Example 08 Co	omposite slab	Sheet	5	of	7	Rev	
---------------	---	---	-------------------	----------------	-------------------------------	-------	
	Verification of the composite slab Ultimate Limit State(ULS)						
6.0.1.0	<i>Bending resistance – location of plastic neutral axis (pna)</i> Maximum compressive design force per metre in the concr the sheeting assuming the pna is below the solid part of the determined as:	rete al ne slal	DOVE D iS				
6.2.1.2	$N_c = f_{cd}A_c = 14.2 \times 70 \times 1000 \times 10^{-3} = 994 \text{ kN/m}$						
	Maximum tensile resistance per metre of the profiled stee determined as:	sheet	; iS				
	$N_{\rm p} = f_{\rm yp,d} A_{\rm p} = 350 \times 1424 \times 10^{-3} = 498.4 \rm kN/m$						
9.7.2(5)	As $N_p < N_c$ the neutral axis lies above the profiled sheeti Therefore the sagaing bending moment resistance should	ng. be					
	determined from the stress distribution shown in the figure	e belov	w.				
	Centrodal axis of the profiled steel sheeting	d N _{c,f} N _p	¹ plRd				
	The depth of concrete in compression is:						
	$x_{pl} = \frac{A_{pe}f_{yp,d}}{bf_{cd}}$ where:						
	b is the width of the floor slab being considered, here;						
	b = 1000 mm						
	$x_{\rm pl} = \frac{1424 \times 350}{1000 \times 14.2} = 35.1 \text{ mm}$						
	Bending resistance – full shear connection						
	1 or full shear connection, the design moment resistance is $M_{\text{pl}\text{Rd}} = A_{p}f_{\text{vd}}(d_{p} - x_{pl}/2)$:					
	$d_p = h - depth$ from soffit to centroidal axis of sheeting						
	$d_p = 130 - 30.5 = 99.5 \text{ mm}$						
	The plastic bending resistance per metre width of the slab	is:					
	$M_{\rm pl,Rd} = 1424 \times 350 \times (99.5 - 35.1/2) \times 10^{-6} = 40.84 \text{ km}$	lm/m		<i>N</i> kĭ	1 _{µ,Ra} = 4 Nm∕m	40.84	
	$\frac{M_{Ed}}{M_{\rhol,Rd}} = \frac{9.35}{40.84} = 0.23 < 1.0$						
	Therefore the bending moment resistance for full shear co adequate.	nnectio	011 is				

Example 08 C	composite slab Sheet 6 of 7 Rev
9.7.3	Longitudinal shear resistance: m-k method
	The method given in 9.7.3 may be used to determine the design resistance to longitudinal shear ($V_{l,Rd}$). In this example, the benefits of end anchorage have been ignored.
9.7.3(4)	$V_{\rm l,Rd} = \frac{bd_{\rm p}}{\gamma_{\rm vs}} \left(\frac{mA_{\rm p}}{bL_{\rm s}} + k \right)$
	<i>m</i> and <i>k</i> are design values obtained from the manufacturer. For the CFGO steel deck the following values have been obtained from the output from the software <i>Comdek</i> . ²⁾
	$m = 157.2 \text{ N/mm}^2$
	$k = 0.1232 \text{ N/mm}^2$
9.7.3(5)	For a uniform load applied to the whole span length;
	$L_{\rm s} = \frac{L}{4} = \frac{3000}{4} = 750 \mathrm{mm}$
9.7.3(4)	$V_{l,Rd} = \left[\frac{1000 \times 99.5}{1.25} \times \left(\frac{157.2 \times 1424}{1000 \times 750} + 0.1232\right)\right] \times 10^{-3}$ = 33.56 kN/m
	$V_{\rm Ed} = 13.07 \rm kN/m$
	The design shear resistance must not be less than the maximum design vertical shear.
	$\frac{V_{\rm Ed}}{V_{\rm L,Rd}} = \frac{13.07}{33.56} = 0.39 < 1.0$
	Therefore the design resistance to longitudinal shear is adequate.
	Design vertical shear resistance
	The vertical shear resistance will normally be based on BS EN 1992- 1-1 Equation 6.2b. Using the nomenclature in BS EN 1994-1-1, the equation becomes:
	$V_{v,Rd} = \left(V_{min} + k_1 \sigma_{cp} \right) b_s d_p$
	Although in reality the slab is continuous, it is normally convenient to design it as simply supported (except for the fire condition when the benefits of continuity are usually recognised). As a consequence of this, the beneficial effect of the hogging moments at the supports is neglected, such that $\sigma_{cp} = 0$. Hence,
	$V_{v,Rd} = V_{min} b_s d_p$
2) If the man	d k values are not available from the manufacturer, the longitudinal chean for clabs without and
anchorage	may be determined using the partial connection method given in 9.7.3(8) of BS EN 1994-1-1,

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

which requires the shear bond values

	Example 08 Co	omposite slab	Sheet	7	of	7	Rev
	BS EN 1992-	The recommended value of v_{min} is					
	1-1 NA 2	$v_{\min} = 0.035 k^{3/2} f_{ck}^{1/2}$					
	Table NA. 1	where $k = 1 + \sqrt{200/d_p} \le 2.0$					
		$1 + \sqrt{200/99.5} = 2.42$, so $k = 2.0$					
		$v_{min} = 0.035 \times 2^{3/2} \times 25^{1/2} = 0.49 \text{ N/mm}^2$					
		$V_{v,Rd} = 0.49 \times 99.5 = 48.8 \text{ kN/m}, > 13.19 \text{ kN/m}, \text{OK}$					
		Therefore the vertical shear resistance is satisfactory.					
		All design checks of the composite slab in the ultimate limi satisfied.	it state	e are			
		Serviceability limit state (SLS):					
		The serviceability limit state checks for the composite slab given in this example. Some notes are given below.	o are n	ot			
	9.8.1 (2)	Cracking of concrete					
		As the slab is designed as being simply supported, only a reinforcement is needed. The cross-sectional area of the	nti-cra	ck			
		reinforcement ($A_{\rm s}$) above the ribs of the profiled steel she	eting				
		concrete above the ribs for unpropped construction. Crac may still need to be verified in some circumstances.	of the k widt	hs			
		Deflection:					
	9.8.2(5)	For an internal span of a continuous slab the vertical deflect be determined using the following approximations:	ction n	nay			
		 the second moment of area may be taken as the avera values for the cracked and un-cracked section; 	age of	the			
		 for concrete, an average value of the modular ratio, n long-term and short-term effects may be used. 	, for b	oth			
		Fire					
		This example has not considered fire resistance, which will govern the design	some	times	5		
D (1)							

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

	7	Job No.			Sheet	1 of	11	Rev	С
	2	Job Title	Example no. 09)	Revised	by D	GB, A _f	oril OS	9
SC	â	Subject	Bracing and bra	acing conne	ections				
Silwood Park, Asc	ot, Berks SL5 7QN			1		1			
Telephone: (01344) Fax: (01344) 6365	4) 636525 570	Client		Made by	JPR	Date	Nov 2	2006	
CALCULATION	I SHEET			Checked by	AGK	Date	Dec	2006	
PUnless stated	Bracing and bracing	connect	cions						
otherwise all references are	Design summary:								
to BS EN	(a) The wind loading	at each fl	loor is transferre	ed to two v	ertically				
1993-1-1	diaphragms.	on grid li	nes A and J b	by the floor	s acting	as			
	(b) The bracing syste (EHF) in addition	em must c to the wir	carry the equivale nd loads.	ent horizont	cal force:	5			
	(c) Locally, the bracil	ng must c	carry additional lo	oads due to	о , ,				
	imperfections at s 5.3.2(5)). These	3plices (c imperfec [.]	l 5.3.3(4)) and r tions are conside	restraint fo ered in turr	rces (cl 1 in				
	conjunction with e as the EHF.	external la	ateral loads but r	not at the s	same tim	e			
	(d) The braced bays, acting as vertical pin-jointed frames, transfer the horizontal wind load to the ground.								
	(e) The beams and co	olumns th	at make up the b	racing syst	em have	2			
	already been des diagonal members	igned for 5 have to	gravity loads". be designed and	Therefore, d only the f	only the orces in				
	these members h	ave to be	calculated.	•					
	(f) All the diagonal m most heavily load	ed members a	are of the same s er has to be des	bection, the bigned.	us, only [.]	the			
	Forces in the bracin	<u>g syster</u>	<u>n</u>						
BS EN	Total overall unfactore	ed wind lo	$(pad^{2}), F_{w} = 925$	kN					
1991-1-4	With two braced bays braced bay = 0.5 X	, total un 925 =	factored load to 463 kN	be resiste	ed by ead	ch			
	<u>Actions</u>								
	Roof								
	Permanent action =	= 0.9 kN/	/m ²						
	Variable action =	= 0.6 kN/	′m²						
	Floor								
	Permanent action =	= 3.7 kN/	/m ²						
	Variable action =	= 3.3 kN/	'm²						
1) It should be of the bracin	checked that these mem g system, considering th	bers can a e appropri	also carry any load Nate combination o	ds imposed f actions.	by the wi	nd whe	en they	form	part

2) In this example, the wind load considered is only for the direction shown on structural arrangement and loading, Sheet 2. In practice, other directions must also be considered.

Example 09 B	racing and bracing connections		Sheet	2	of	11	Rev
	<u>Ultimate Limit State (ULS)</u>						
BS EN 1990	Partial factors for actions						
NA 2.2.3.2 Table	Partial factor for permanent actions	$\gamma_G = 1.35$					
NA.A1.2(B)	Partial factor for variable actions	$\gamma_Q = 1.5$					
	Reduction factor	$\xi = 0.925$					
BS EN 1990	ψ_0 factors						
NA 2.2.2 Table: NA A1 1	For imposed floor loads (office areas)	$\psi_{\mathcal{O}} = 0.7$					
	For snow loads on roofs (H \leq 1000m a	a.s.l) $\psi_{o} = 0.5$					
	Combinations of actions for ULS, using	Eqn 6.10b					
	Design value of combined actions						
	$= \xi \gamma_G G_k + \gamma_Q Q_k + \psi_O \gamma_Q Q_k$						
	In this example, the bracing will be verif using Equation 6.10b, with wind as the Equivalent horizontal forces (EHF) will al combination. In practice, Equation 6.10 and additional combinations (for example	ied for one design leading variable ac so be calculated fo Da should also be c e with the imposed	case, ction. T or this checkec floor l	he 1, oad			
	as the leading variable action).						
	Design wind load at ULS						
	Using Equation 6.10b with wind as the design wind load per braced bay is:	leading variable ac	tion, th	1e			
	$F_{\rm Ed} = 1.5 \times 463 = 695 \rm kN$						
	Distributing this total horizontal load as levels, in proportion to the storey heig	point loads at roc hts:	of and f	loor			
	Roof level	2.25 18.5 × 695 = 8	35 kN				
	3 rd \$ 2 nd floor levels	$\frac{4.5}{18.5} \times 695 = 1$	69 kN				
	1 st floor level	$\frac{4.75}{18.5} \times 695 = 1$	78 kN				
	Ground at column base level	$\frac{2.5}{18.5} \times 695 = 9$	94 kN*				
	*Assume that this load is taken out in s and is therefore not carried by the fram	hear through the g 1e.	round s	əlab			

Example 09 Br	racing and bracing connections	Sheet	3	of	11	Rev	
	Equivalent horizontal forces						
	With wind as the leading variable action, the design values combined floor and roof actions are:	of the					
	Design value for combined roof actions						
	$= 0.925 \times 1.35 \times 0.9 + 1.5 \times 0.5 \times 0.6 = 1.57 \text{ km}$	V/m ²					
	Design value for combined floor actions						
	$= 0.925 \times 1.35 \times 3.7 + 1.5 \times 0.7 \times 3.3 = 8.09 \text{ km}$	V/m ²					
	Total roof load = 1.57 × 14 × 48 = 1055 kN Total floor load = 8.09 × 14 × 48 = 5437 kN						
	Equivalent horizontal forces for each bracing system are:						
	$roof level = \frac{1000}{200} \times 0.5 = 2.64 \text{ kN}$						
	floor level = $\frac{5437}{200} \times 0.5 = 13.6 \text{ kN}$						
BS EN 1993-	The equivalent horizontal forces have been based on $\phi_{ m O}$ =	1/200).				
1-1 5.3.2(3)	The $\alpha_{\rm h}$ and $\alpha_{\rm m}$ factors have not been used, which is conserved. Use of the $\alpha_{\rm m}$ and $\alpha_{\rm m}$ factors will reduce the forces in the	rvative bracin	a				
		D T D O T N	J.				
	Morizontal forces at ground level						
	= (85 + 169 + 169 + 178) = 601 kN						
	Horizontal design force due to equivalent horizontal loads						
	$= 2.64 + 3 \times 13.6 = 43.4 \text{ kN}$						
	Total horizontal design force per bracing system = 601 + 43.4 = 644.4 kN						
	A computer analysis of the bracing system can be perform obtain the member forces. Alternatively, hand calculations carried out to find the member forces. Simply resolving fo horizontally at ground level is sufficient to calculate the for lowest (most highly loaded) bracing member, as shown in f	ied to can be orces rce in t Figure	e the 9.1.				
	G m G m Horizontal component c bracing member = 644	of force 1.4 kN	e in				
	G44.4 Vertical component of f bracing member =	force in	1				
	5 m $\frac{644.4}{6} \times 5 = 537.0 \text{ kM}$	N					
	\checkmark \checkmark \checkmark \leftarrow 644.4 Axial force in bracing =						
	Figure 9.1 Lowest bracing $\sqrt{644.4^2 + 537.0^2} =$	839 k	N				

Example 09 B	racing and bracing connections	Sheet	4	of	11	Rev
	Partial factors for resistance					
NA 2.15	$\gamma_{\rm MO} = 1.0$					
BS EN 1993-	$\gamma_{M1} = 1.0$					
1-8 NA 2.3 Table NA 1	$\gamma_{M2} = 1.25$ (for bolts and welds)					
	Trial section					
	Try: 219.1 \times 10.0 mm thick Circular Hollow Section (CHS S355	5), gr	ade			
SCI P363	Section Properties					
	Area $A = 65.7 \text{ cm}^2$					
	Second moment of area $I = 3600 \text{ cm}^{\circ}$ Radius of avration $i = 7.40 \text{ cm}^{\circ}$					
	Thickness $t = 10.0 \text{ mm}$					
	Ratio for local Buckling $d/t = 21.9$					
	Material properties					
NA 2.4	As $t \leq 16$ mm, for S355 steel					
BS EN 10210-1 Table A3	Yield strength $f_y = 355 \text{ N/mm}^2$					
3.2.6 (1)	modulus of elasticity $E = 210 \text{ kN/mm}^2$					
5.5	Section classification					
Table 5.2	Class 1 limit for section in compression, $d/t \leq 50 \epsilon^2$					
	$\varepsilon = (235/f_y)^{0.5}, f_y = 355 \text{ N/mm}^2, \varepsilon = 0.82$					
	$d t \le 50e^2 = 50 \times 0.82^2 = 33.6$					
	Since $21.9 < 33.6$, the section is Class 1 for axial compression of the section	essi0	n			
	Design of member in compression					
	Cross sectional resistance to axial compression					
6.2.4(1) Eq. 6.9	Basic requirement $\frac{N_{Ed}}{N_{c,Rd}} \leq 1.0$					
	$N_{\rm Ed}$ is the design value of the applied axial force					
	$N_{\rm Ed}$ = 839 kN					
	$N_{c,Rd}$ is the design resistance of the cross-section for uni compression	iform				
6.2.4(2) Eq. 6.10	$N_{c,Rd} = \frac{A \times f_y}{\gamma_{MO}}$ (For Class 1, 2 and 3 cross-sections)					
	$N_{c,Rd} = \frac{6570 \times 355}{1.0} \times 10^{-3} = 2332 \text{ kN}$					

Example 09 B	racing and bracing connections Sheet 5	o	of 11	Rev
	$\frac{N_{\rm Ed}}{N_{c,\rm Rd}} = \frac{839}{2332} = 0.36 < 1.0$			
	Therefore, the resistance of the cross section is adequate.			
	Flexural buckling resistance			
6.3.1.1(1) Eq. 6.46	For a uniform member under axial compression the basic requiremen is:	t		
	$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} \le 1.0$			
	$N_{\rm b,Rd}$ is the design buckling resistance and is determined from:			
6.3.1.1(3) Eq. 6.47	$N_{\rm b,Rd} = \frac{\chi A_{\rm y}^{\rm f}}{\gamma_{\rm M1}}$ (For Class 1, 2 and cross-sections)			
6.3.1.2(1)	χ is the reduction factor for buckling and may be determined from Figure 6.4.			
Table 6.2	For hot finished CHS in grade S355 steel use buckling curve 'a'		Use buc	kling ,
	For flexural buckling the slenderness is determined from:			7
6.3.1.3(1) Eq. 6.50	$\overline{\lambda} = \sqrt{\frac{Af_y}{N_{cr}}} = \left(\frac{L_{cr}}{i}\right) \left(\frac{1}{\lambda_1}\right) $ (For Class 1, 2 and 3 cross-sections)			
	where:			
	L_{cr} is the buckling length			
	As the bracing member is pinned at both ends, conservatively take: $\sqrt{5000^2 + 000^2}$		$L_{cr} = 5$	7810 mm
	$L_{cr} = L = \sqrt{5000 + 6000} = 7810 \text{ mm}$ $\lambda_{r} = 93.9\varepsilon$		Ci	
Table 5.2	$\varepsilon = \sqrt{\frac{235}{f_y}} = \sqrt{\frac{235}{355}} = 0.81$			
	$\lambda_1 = 93.9 \times 0.81 = 76.1$		$\lambda_1 = 76$	5.1
6.3.1.3(1) Eq. 6.50	$\overline{\lambda} = \left(\frac{7810}{74}\right) \times \left(\frac{1}{76.1}\right) = 1.39$		$\overline{\lambda} = 1$.39
Figure 6.4	For $\overline{\lambda} = 1.39$ and buckling curve 'a'			
	$\chi = 0.42$		$\chi = 0.4$	42
(311)	Therefore,		Florensel	
Eq. 6.47	$N_{b,Rd} = \frac{0.42 \times 65.7 \times 10^2 \times 355}{1.0} \times 10^{-3} = 980 \text{ kN}$		resistance $N_{\rm b,Rd} =$	ce 980 kN
6.3.1.1(1) Eq. 6.46	$\frac{N_{\rm Ed}}{N_{\rm b,Rd}} = \frac{839}{980} = 0.86 < 1.0$			
	Therefore, the flexural buckling resistance of the section is adequate.			

Example 09 Br	racing and bracing connections Sheet	6	of	11	Rev
6.2.3	Design of member in tension				
	When the wind is applied in the opposite direction, the bracing member considered above will be loaded in tension. By inspection the tensile capacity is equal to the cross-sectional resistance, 2332 kN, > 839 kN, OK	on,			
	Resistance of connection (see Figure 9.2)				
	Assume the CHS is connected to the frame via gusset plates. Fla end plates fit into slots in the CHS section and are fillet welded to the CHS. Bolts in clearance holes transfer the load between the end plate and gusset plates.	at :0			
	Verify the connection resistance for 839 kN tensile force.				
	Try: 8 No non-preloaded Class 8.8 M24 diameter bolts in 26 mm diameter clearance holes	n			
P363	Assume shear plane passes through the threaded part of the bolt	,			
	Cross section area, $A = A_s = 353 \text{ mm}^2$ Clearance hole diameter, $d_o = 26 \text{ mm}$				
BS EN 1993-	For Class 8.8 non-preloaded bolts:				
1-8 Table 3.1	Yield strength f_{yb} = 640 N/mm²Ultimate tensile strength f_{ub} = 800 N/mm²				
	Positioning of holes for bolts:				
	(Minimum) End distance (e_1) $1.2 d_o = 31.2 \text{ mm} < e_1 = 40 \text{ mm}$ (Minimum) Edge distance (e_2) $1.2 d_o = 31.2 \text{ mm} < e_2 = 60 \text{ mm}$ (Minimum) Spacing (p_1) $2.2 d_o = 57.2 \text{ mm} < p_1 = 80 \text{ mm}$ (Minimum) Spacing (p_2) $2.4 d_o = 62.4 \text{ mm} < p_2 = 130 \text{ mm}$	m			
	(Maximum) $e_1 \notin e_2$, larger of $8t = 120$ mm or 125 mm > 40 mm \notin 60 mm				
	(Maximum) $p_1 \notin p_2$ Smaller of $14t = 210$ mm or 200 mm > 80 mm \notin 130 mm Therefore, bolt spacings comply with the limits.				
	UKB UKB Gusset plate CHS end plate 219.1 dia. CHS Extended end plate CHS end plate 219.1 dia. CHS Figure 9.2 Bracing setting out and connection detail				

Example 09 Br	racing and bracing connections	Sheet	8	of	11	Rev
BS EN 1993- 1-1 NA 2.4 BS EN 10025-2 Table 7 BS EN 1993-1-8 Table 3.4	End plate is a grade S275 and as t \leq 16 mm, for S275 Yield strength $f_y = 275$ N/mm ² as $3 \leq t \leq 100$ mm; Ultimate tensile strength $f_v = 410$ N/mm ² The bearing resistance of a single bolt is determined from $F_{b,Rd} = \frac{k_1 \alpha_b f_v dt}{\gamma_{M2}}$ α_b is the least value of α_d , $\frac{f_{ub}}{f_{u,p}}$ and 1.0 For end bolts $\alpha_d = \frac{e_1}{3d_o} = \frac{40}{3 \times 26} = 0.51$ For inner bolts $\alpha_d = \frac{p_1}{3d_o} - \frac{1}{4} = \left(\frac{80}{3 \times 26}\right) - \left(\frac{1}{4}\right) = 0.78$ $\frac{f_{ub}}{f_{u,p}} = \frac{800}{410} = 1.95$ Therefore: For end bolts $\alpha_b = 0.51$ For inner bolts $\alpha_b = 0.51$	steel				
	Conservatively consider $\alpha_b = 0.76$ Conservatively consider $\alpha_b = 0.51$ for each bolt. For edge bolts k_1 is the smaller of $2.8 \frac{e_2}{d_o} - 1.7$ or 2. $\left(2.8 \times \frac{60}{26}\right) - 1.7 = 4.8$ For inner bolts k_1 is the smaller of $1.4 \frac{p_2}{d_o} - 1.7$ or 2. $\left(1.4 \times \frac{130}{26}\right) - 1.7 = 5.3$ Therefore:	.5		α	b = 0.	51
	For both end and inner bolts $k_1 = 2.5$ The least bearing resistance of a single bolt in this connections: $2.5 \times 0.51 \times 410 \times 24 \times 15$ 10^{-3} 151000	ction is	5	<i>k</i> ₁	= 2.5	5
	$F_{b,Rd} = \frac{1.25}{1.25}$ Resistance of all six bolts in bearing may be conservatively $8F_{b,Rd} = 8 \times 151 = 1208$ kN	/ taken	1 25:	Fi Ra ba	esistan olts in E 208 kN	51 kN ce of 8 pearing N

Discuss me

Example 09 Br	acing and bracing connections	Sheet	9	of 11	Rev
BS EN 1993-1-8 3.7	<u>Group of fasteners</u> Because the shear resistance of the bolts (135 kN) is less minimum bearing resistance of any bolt (151 kN), the desid resistance of the group is taken as: $8 \times 135 = 1080$ kN Design of fillet weld (see Figure 9.3)	ə than gn	the	Resista bolt gro 1080 k	nce of the oup :N
BS EN 1993-1-8 4.5 BS EN 1993-1-8 4.5.3.3(3) BS EN 1993-1-8 Table 4.1	Assume 6 mm leg length fillet weld is used on both sides, bottom, of the fitted end plate. Use the simplified method 4.5.3.3 Design shear strength, $f_{vw,d} = \frac{f_v / \sqrt{3}}{\beta_w \gamma_{M2}}$ Correlation factor, for S275 steel $\beta_w = 0.85$ Throat thickness of weld $a = 0.7 \times \text{leglength} = 0.7 \times 6.0 = 4.2 \text{ mm}$	top al in	nd		
BS EN 1993-1-8 4.5.3.3(2) See sheet 7	Therefore, $f_{vw,d} = \frac{410/\sqrt{3}}{0.85 \times 1.25} = 222.8 \text{ N/mm}^2$ Design resistance of weld per unit length is: $F_{vw,d} = f_{vw,d}a = 222.8 \times 4.2 = 935.8 \text{ N/mm}$ Hence, for four welds, each with an effective length of: $l_{eff} = 250 - (2 \times 6.0) = 238 \text{ mm}$ the shear resistance is $4F_{w,Rd}l_{eff} = 4 \times 935.8 \times 238 \times 10^{-3} = 891 \text{ kN}, > 839 \text{ kN},$	OK		Shear re 4 by 23 6 mm fill 891 kN	sistance of 8 mm long et welds is:
	Local resistance of CHS wall In the absence of guidance in BS EN 1993-1-1 for the sh of a plain rectangular area, it is assumed that the shear area $A_v = 0.9$ dt, where d is the depth of the rectangular area t the thickness. Total shear area = 4 × 0.9 ×250 × 10 = 9000 mm ² Shear resistance is $\frac{A_v(f_y/\sqrt{3})}{\gamma_{MO}} = \frac{900 \times 355/\sqrt{3}}{1.0 \times 10^3} = 1$ 1844 kN > 839 kN, OK	ear ar ea, and 844 k	ea N		

Example 09 Bracing and bracing connections Sheet 11 of 11 Rev $A_{\rm nt}$ is minimum of $(p_2 - d_0) t_p$ and 2 $(e_z - 0.5 d_0) t_p$ $(p_2 - d_0) t_p = (130 - 26) \times 15 = 1560 \text{ mm}^2$ $2 (e_2 - 0.5 d_o) t_p = 2 (60 - 13) \times 15 = 1410 \text{ mm}^2$ $A_{\rm nt} = 1410 \ {\rm mm}^2$ $A_{nv} = 2(3p_1 + e_1 \quad 2.5d_0)t_w = 2 \times 215 \times 15 = 6450 \text{ mm}^2$ $V_{eff,1,Rd} = \frac{410 \times 1410}{1.25 \times 10^{3}} + (1/\sqrt{3}) \times \frac{275 \times 6450}{1.0 \times 10^{3}} = 1487 \text{ kN}$ $V_{\rm Eff.1,Rd} = 1487 \, \rm kN$ 1487 kN > 839 kN, OKThe gusset plates would also require checking for shear, bearing and welds, together with full design check for the extended beam end plates³⁾. 3) The gusset plate must be checked for yielding across an effective dispersion width of the plate. When the bracing member is in compression, buckling of the gusset plate must be prevented and therefore a full design check must be carried out.

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

	7	Job No.			Sheet	1 of	7	Rev	С		
	2	Job Title	Example no. 10)	Revised	l by D	GB, Af	ril OS)		
LISC	â	Subject	Beam-to-colum	n flexible e	nd plate	conne	ection				
Silwood Park, Asc	ot, Berks SL5 7QN					L					
Fax: (01344) 636	570	Client		Made by	MS	Date	Nov 2	2006			
CALCULATION	I SHEET			Checked by	PA	Date	Date Dec 2006				
Unless stated otherwise all references are to BS EN 1993-1- 8:2005 BS EN 1993-1-1 NA 2.4 BS EN 10025-2 Table 7 BS EN 1993- 1-1 NA 2.15	Beam-to-column flexible end plate connectionDesign the beam-to-column connection at level 1 between gridlinesG and 2.Initial sizing of the components of the connectionColumn254 × 254 × 73 UKC in S275 steelBeam457 × 191 × 82 UKB in S275 steelFor the beam, $f_y = 275$ N/mm²; $f_v = 410$ N/mm²; $h_b = 460$ mm; $t_w = 9.9$ mm; $t_f = 16$ mmFor the plate, $f_v = 410$ N/mm² $V_{cRd} \approx \frac{h_b \times t_w \times \left(\frac{f_y}{\sqrt{3}}\right)}{\gamma_{MO}} = \frac{460 \times 9.9 \times \left(\frac{275}{\sqrt{3}}\right)}{1.0 \times 10^{-3}} = 723$ kNFrom example 1 the design shear force at ULS, $V_{Ed} = 230$ kN										
Access steel document SNO1 3a-EN- EU	Because 230 < 0.75 h_b < 500 mm, so 8 c End plate depth is min Assuming M20 bolts, 6 M20 bolts are prop Based on the above, is shown in Figure 10 p_1	$5 V_{cRd}$, a p or 10 mm nimum 0.6 number c posed. the initial 0.1. 2e a 280 a a 280 a a 280 a a 280 a a 280 a a 280 a a a a 280 a a a a 280 a a a a a 280 $aaaaaaaaaa$	partial depth end endplate is prop $h_b = 276 \text{ mm};$ of bolts = 239/7 sizing of the cor 50 55 85 85 85 85 85 85 85	plate is proposed. propose 2 74 = 3.2 innection cc 77 a = 4 6 No. 50 a b b b a b b b b b b b b	nm M20 8.8 b	olts 9					

Example 10 Be	eam-to-column flexible end plate connection	Sheet	2	of	7	Rev		
	Bolt details							
	The bolts are fully threaded, non-preloaded, M2O 8.8, 60 as generally used in the UK.							
	Tensile stress area of bolt $A_s = 245 \text{ mm}^2$ Diameter of the holes $d_0 = 22 \text{ mm}$ Diameter of the washer $d_w = 37 \text{ mm}$ Yield stress state $f_w = 640 \text{ N/mm}^2$							
	Ultimate tensile strength f_{ub} = 800 N/mm²							
3.5, Table 3.3	Limits for locations and spacings of bolts End distance $e_1 = 55 \text{ mm}$							
	$Minimum = 1.2d_o = 1.2 \times 22 = 26.4 \text{ mm} < 55 \text{ mm},$	ОК						
	Edge distance $e_2 = 50 \text{ mm}$ Limits are the same as those for end distance. Minimum = $1.2d_0 = 1.2 \times 22 = 26.4 \text{ mm} < 50 \text{ mm}$,	OK						
	Spacing (vertical pitch) $p_1 = 85 \text{ mm}$ Minimum = 2.2 d_2							
	$2.2d_0 = 2.2 \times 22 = 48.4 \text{ mm} < 85 \text{ mm}, \text{OK}$							
	$14l_p = 14 \times 10^\circ = 140^\circ \text{mm} > 05^\circ \text{mm}$ Spacing (horizontal gauge) $p_2 = 100^\circ \text{mm}$							
	$\begin{array}{l} \text{Minimum} = 2.4d_{o} \\ 2.4d_{o} = 2.4 \times 22 = 52.8 \text{ mm} < 100 \text{ mm}, \text{ OK} \end{array}$							
4.7.3	<u>Weld design</u>							
Access Steel	For full strength "side" welds $T_{\text{bisest}}(x) > 0.20$ x, t			W	Weld throat			
SNO14a-	Throat (a) $\geq 0.39 \times t_w$ a $\geq 0.39 \times 9.9 = 3.86$ mm; adopt throat (a) of 4mm, thickness, a = 4 mm							
LIN-LU	leg = 6 mm $leg = 1000 Leg = 1000 Leg$							
BS EN 1993-1-1	Partial factors for resistance							
6.1(1) Table 2.1	$\gamma_{MO} = 1.0$ $\gamma_{M2} = 1.25$ (for shear)							
BS EN 1993-1-8	$\gamma_{M2} = 1.1$ (for bolts in tension)							
NA 2.3 Table NA.1								
Access Steel document	$\gamma_{M_U} = 1.1$							
SNO18a- EN-EU	The partial factor for resistance γ_{M_U} is used for the tying re Elastic checks are not appropriate; irreversible deformatio expected.	esistar n is	1 <i>C</i> e.					

Example 10 Be	eam-to-column flexible end plate connection		Sheet	3	of	7	Rev
SNO14a- EN-EU	The connection detail must be ductile to mean requirement that it behaves as nominally pinned based on SNO14, the ductility requirement is supporting element (column flange in this case complies with the following conditions: $t_{p} \leq \frac{d}{2.8} \sqrt{\frac{f_{u,b}}{f_{y,p}}} \text{ or } t_{f,c} \leq \frac{d}{2.8} \sqrt{\frac{f_{u,b}}{f_{y,c}}}$ $\frac{d}{2.8} \sqrt{\frac{f_{u,b}}{f_{y,p}}} = \left(\frac{20}{2.8}\right) \times \sqrt{\frac{800}{275}} = 12 \text{ mm}$ Since $t_{p} = 10 \text{ mm} < 12 \text{ mm}$, ductility is end Joint shear resistance The following table gives the complete list or need to be determined for the joint shear recritical checks are shown in this example. The denoted with an * in the table. Because a full provided, no calculations for the weld are recreated and the state of the s	et the desi ed. For the s satisfied be) or the e sored. f design re sistance. (e critical ch strength quired.	gn e UK, and if the end plate, sistances Only the necks are weld has f	that			
	Mode of failure						
	Bolts in shear*	$V_{\rm Rd,1}$					
	End plate in bearing*	$V_{\rm Rd,2}$					
	Supporting member (column) in bearing	V _{Rd,3}					
	End plate in shear (gross section)	$V_{\rm Rd,4}$					
	End plate in shear (net section)	$V_{\rm Rd,5}$					
	End plate in block shear	V _{Rd,6}					
	End plate in bending	$V_{\rm Rd,7}$					
	Beam web in shear*	$V_{\rm Rd,8}$					
3.6.1 ¢ Table 3.4	Bolts in shear Assuming the shear plane passes through the bolt, the shear resistance $F_{v,Rd}$ of a single $F_{v,Rd} = \frac{\alpha_v f_{ub} A}{\gamma_{M2}}$						
Access Steel document SNO14a-EN- EU	Access Steel Although not required by the Eurocode, a factor of 0.8 is introduced into the above equation, to allow for the presence of modest tension (not calculated) in the bolts. EU For bolt class 8.8, $\alpha_v = 0.6$, therefore,						
	$\Gamma_{\rm v,Rd} = 0.8 \mathrm{x} - 1.25 = 75.$	2 kN					
	For 6 bolts, $V_{Rd,1} = 6 \times 75.2 = 451 \text{ kN}$						451 kN

Example 10 Be	eam-to-column flexible end plate connection	Sheet	4	of	7	Rev
Example 10 Be 3.6.1 Table 3.4	Exam-to-column flexible end plate connection $\frac{\text{End plate in bearing}}{\text{The bearing resistance of a single bolt, } F_{b,Rd} \text{ is given by:}}$ $F_{b,Rd} = \frac{k_1 \alpha_b f_{u,p} dt_p}{\gamma_{M2}}$ Where: $\alpha_b = \min\left(\alpha_d; \frac{f_{u,b}}{f_{u,p}}; 1.0\right)$ and $a_d = \frac{e_1}{3d_o}$ for end bolts and $\frac{p_1}{3d_o} - \frac{1}{4}$ for inner bolts For end bolts, $\alpha_b = \min\left(\frac{55}{3x22}; \frac{800}{410}; 1.0\right) = \min\left(0.83; 1.95; 1.0\right) = 0.83$ For inner bolts, $\alpha_b = \min\left(\frac{85}{3x22} - \frac{1}{4}; \frac{800}{410}; 1.0\right) = \min\left(1.04; 1.95; 1.0\right) = k_1 = \min\left(2.8 \times \left(\frac{50}{22}\right) - 1.7; 2.5\right)$ Therefore, $k_1 = \min(4.66; 2.5) = 2.5$ Therefore, for the end bolts, $F_{b,Rd} = \frac{2.5 \times 0.83 \times 410 \times 20 \times 10}{1.25} \times 10^{-3} = 136.1 \text{ kN}$ And for the inner bolts,	Sheet	4	of	7	Rev
BS EN 1993-1- 8:2005 3.7 BS EN 1993-1-1 6.2.6(2)	And for the inner polts, $F_{b,Rd} = \frac{2.5 \times 1.0 \times 410 \times 20 \times 10}{1.25} \times 10^{-3} = 164.0 \text{ kN}$ The bearing resistance of the bolts $= 2 \times 136.1 + 4 \times 164 = 928 \text{ kN}$ Group of Fasteners Because the shear resistance of the fasteners (75.2 kN) is the bearing resistance, the resistance of the group of fast must be taken as the number of fasteners multiplied by the design resistance of the individual fasteners – in this case Resistance of the group = 6 × 75.2 = 451 kN Beam web in shear Shear resistance is checked only for the area of the beam connected to the end plate. The design plastic shear resistance is given by: $V_{pl,Rd} = V_{Rd,8} = \frac{A_v(f_{y,b}/\sqrt{3})}{\gamma_{MO}}$	s less eners small 75.2 web	than est kN	V	/ =	= 928 kN

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

Example 10 Be	eam-to-column flexible end plate connec	tion	Sheet 5	of 7	Rev				
Access Steel document SNO14a-EN-	A factor of 0.9 is introduced into the calculating the plastic shear resistance covered in BS EN 1993-1-1)	above equation wh e of a plate (which i	en is not						
EU	$= 0.9 \times \frac{(280 \times 9.9) \times (275 / \sqrt{3})}{1.0} \times 10^{-10}$		$V_{Rd,\delta} =$	396 kN					
	The design shear resistance of the co 396 kN, $>$ 230 kN, OK								
	Tying resistance of end plate 1)								
	The following table gives the complete need to be determined for the tying r Only critical checks are shown. The ci an * in the table. The check for bolts because the tension capacity of the bo the end plate in bending check.								
	Mode of failure								
	Bolts in tension	N _{Rd,u,1}							
	End plate in bending*	N _{Rd,u,2}							
	Supporting member in bending	N _{Rd,u,3}							
	Beam web in tension	N _{Rd,u,4}							
	Bolts in tension								
3.6.1 ŧ	The tension resistance for a single bolt is given by:								
Table 3.4	$\mathcal{F}_{t,Rd} = \frac{k_2 f_{ub} A_s}{k_s}$								
	$k_2 = 0.9$								
	$N_{\rm Rd,u,1} = F_{\rm t,Rd} = \frac{0.9 \times 800 \times 245}{1.1} \times 10^{-1}$								
	For 6 bolts, $N_{Rd,u,1} = 6 \times 160.4 = 96$	N _{Rd,u,1} =	= 962 kN						
	End plate in bending								
	Equivalent tee-stub considered for the	e end plate in bend	ing checks:						
	→ ►	tw,b							
	$O.8a\sqrt{2}$								
	► ^P 3								
1) The tying for	, ce to be resisted should be determined fo ational Regulations i.e. Building Regulations	llowing the guidance	in BS EN 199	91-1-7 or	the				

ļ	Example 10 Be	of	7	Rev			
	6.2.4 ¢ Table 6.2	$N_{\text{Rd},u,2} = \min(F_{\text{Rd},u,ep1}; F_{\text{Rd},u,ep2})$ For mode 1: $F_{\text{Rd},u,ep1} = F_{\text{T},1,\text{Rd}} = \frac{(8n_p - 2e_w)M_{pl,1,\text{Rd}}}{2m_pn_p - e_w(m_p + n_p)}$					
		For mode 2: $F_{\text{Rd},u,ep1} = F_{\text{T},2,\text{Rd}} = \frac{2M_{pl,2,\text{Rd}} + n_p \sum F_{t,\text{Rd}}}{m_p + n_p}$					
		Where: $n_p = \min(e_2; e_{2,c}; 1.25m_p)$					
		$m_{\rm p} = \frac{\left(p_{3} - t_{\rm w,b} - 2 \times 0.8 a \sqrt{2}\right)}{2}$					
		$e_{\rm w} = \frac{d_{\rm w}}{4} = \frac{37}{4} = 9.25 \text{ mm}$					
		($\mathcal{A}_{\!_{\rm W}}$ is the diameter of washer or width across points of bol nut)	lt head	d or			
		Here,					
		$m_{\rm p} = \frac{\left[100 - 9.9 - \left(2 \times 0.8 \times 4 \times \sqrt{2}\right)\right]}{2} = 40.5 \text{ mm}$					
		$1.25m_p = 1.25 \times 40.5 = 50.7$ mm					
		$n_p = \min(50; 77; 50.7) = 50 \text{ mm}$					
		$M_{pl,1,Rd} = \frac{1}{4} \frac{\sum \ell_{eff,1} t_{p}^{2} f_{y,p}}{\gamma_{MO}} $ (Mode 1)					
		$M_{pl,2,Rd} = \frac{1}{4} \frac{\sum \ell_{eff,2} t_{p}^{2} f_{y,p}}{\gamma_{MO}} $ (Mode 2)					
		Calculate the effective length of the end plate for mode 1 and mode 2 $(\sum \ell_{eff,2})$.	$\left(\sum \ell e\right)$	eff, 1)			
	6.2.6.5 ¢ Table 6.6	For simplicity, the effective length of the equivalent tee sti taken as the length of the plate, i.e. 280 mm	ub, l _{eff}	i5			
		Therefore, $\sum \ell_{eff,1} = \sum \ell_{eff,2} = h_p = 280 \text{ mm}$					
		$M_{\rm pl, 1, Rd, u} = \frac{1}{4} \frac{h_{\rm p} t_{\rm p}^2 f_{\rm u, p}}{\gamma_{\rm Mu}}$					
		$M_{\rm pl, 1, Rd, u} = \frac{1}{4} \times \left(\frac{280 \times 10^2 \times 410}{1.1}\right) \times 10^{-6} = 2.61 \text{ kNm}$					
		Mode 1: $[(8 \times 50) - (2 \times 9.25)] \times 2.61 \times 10^{3}$					
		$F_{T,1,Rd} = 1000000000000000000000000000000000000$					

Example 10	Beam-to-column flexible end plate connection		She	et 7	of 7	Rev
	Mode 2:					
	In this case $M_{\rm pl,2,Rd,u} = M_{\rm pl,1,Rd,u}$					
	$F_{T,1,Rd} = \frac{(2 \times 2.61 \times 10^3) + (50 \times 962)}{40.5 + 50} = 5$	89 kN				
	$F_{T,1,Rd} = min(310; 589) = 310 \text{ kN}$					
	Therefore, $N_{\rm Rd,v,2}$ = 325 kN				$N_{\rm Rd,u,2} =$	325 kN
	Summary of the results					
	The following tables give the complete list need to be determined for the tying resis Only critical checks are shown in this exam denoted with an * in the tables.	of desig tance of t ple The c	n resistanc the end pla critical chec	es that Ite. Cks are		
	Joint shear resistance					
	Mode of failure	Resista	ance			
	Bolts in shear*	$V_{\rm Rd,1}$	451 kN			
	End plate in bearing*	$V_{\rm Rd,2}$	928 kN			
	Supporting member (column) in bearing	$V_{\rm Rd,3}$				
	End plate in shear (gross section)	$V_{\rm Rd,4}$				
	End plate in shear (net section)	$V_{\rm Rd,5}$				
	End plate in block shear	$V_{\rm Rd,G}$				
	End plate in bending	$V_{\rm Rd,7}$				
	Beam web in shear*	$V_{\rm Rd,8}$	396 kN			
	The governing value is the minimum value a $V_{\rm Rd}$ = 396 kN Tying resistance of end plate	nd theref	ore	_		
	Mode of failure	Resista	ance			
	Bolts in tension	N _{Rd,u,,1}	962 kN			
	End plate in bending*	N _{Rd,u,2}	310 kN			
	Supporting member in bending	N _{Rd,u,3}	N/A			
	Beam web in tension	$N_{Rd,u,4}$]		
	The governing value is the minimum value a $N_{\rm Rd,u} = 310 \text{ kN}$ Note that if the column flange is thinner the	nd theref an the en	ore Id plate, th	iS		
	snould be checked for bending. The tying force has not been calculated, be the same magnitude as the shear force. If insufficient, a thicker plate could be used ductility in this instance), or a full depth en-	out in som the resis (maximum nd plate,	e cases wo tance is 12 mm to or an alter	ould be ensure native		

A little of the second

Created on 03 February 2011 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

	1	Job No.			Sheet	1 0	f 2	Rev (2
	2	Job Title	Example no. 11		Revised	Revised by DGB, April 09			
		Subject	Column base						
Silwood Park, Asc Telephone: (0134)	ot, Berks SL5 7QN 4) 636525			[1			
Fax: (01344) 636	Fax: (01344) 636570			Made by	MC	Date	Apr 2	2007	
CALCULATION	I SHEET			Checked by	KS	Date	May i	2007	
Unless stated otherwise all references are to BS EN 1993-1-1 and its National Annex	<u>Column base connect</u> Design conditions for From previous calculat considered. The column is assumed column is stable during the column profile sho	$\frac{column}{column} G$ tions the final of the price of the error of th	52 following design n-ended. However ction phase ther ed.	forces sho ver it is cru efore 4 bc	ould be cial the lts outs	ide			
Example 05	Fig Characteristic force d Characteristic force d <u>Ultimate Limit State (L</u> <i>Partial factors for act</i>	y Figure 11.1 Plan of baseplate Characteristic force due to permanent action, $F_{G,k} = 466$ kN Characteristic force due to variable action, $F_{Q,k} = 416$ kN <u>Ultimate Limit State (ULS)</u>							
BS EN 1990-1-1 NA 2.2.3.2 Table NA A1.2(B)	Partial factor for perm Partial factor for variable Reduction factor Combination of action Design value of combine $N_{\rm Ed} = 0.925 \times 1.35$	nanent act e action is for ULS ned action X 466 -	ion $\gamma_{\rm G} = 1.35$ $\gamma_{\rm Q} = 1.5$ $\xi = 0.925$ ns + 1.5 × 416 =	5 = 1206 kN	I	ŀ	Axial for	ce	
P 363	<i>Column details</i> Column G2 is a typica Serial size 254 x 25 Height of section Breadth of section Thickness of flange Thickness of web Cross sectional Area Section perimeter	$\begin{array}{l} \text{internal } a \\ 54 \times 73 \\ h = \\ b = \\ t_{f} = \\ t_{w} = \\ A = \\ = \\ = \end{array}$	column UKC in S275 st 254.1 mm 254.6 mm 14.2 mm 8.6 mm 93.1 cm ² 1490 mm	teel		/	$N_{Ed} = 1$	206 kl	Ζ

Example 11 Co	olumn base	Sheet	2	of <i>2</i>	Rev
	Partial factors for resistance				
NA 2.15	$\gamma_{MO} = 1.0$ $\gamma_{M2} = 1.25$				
	<u>Base plate details</u>				
BS EN 1992-1-1 Table 3.1	Strength of foundation concrete to be C25/30 (i.e. $f_{ck} = 30 \text{ N/mm}^2$)				
BS EN 1992-1-1 NA 2	$f_{cd} = \frac{\alpha_{cc} f_{ck}}{\gamma_c}$				
Table NA 1 BS EN	α_{cc} to be taken as 0.05 for axial loading $\alpha_{cc} = 1.5$				
1992-1-1 NA 2 Table NA 1	$\gamma_c = 1.5$				
	$f_{cd} = \frac{0.85 \times 30}{1.5} = 17$ N/mm ²			$f_{cd} = 1$	7 N/mm ²
	Area required = $\frac{1206 \times 10^3}{17}$ = 70941 mm ²				
	Effective area $\approx 4c^2$ + Section perimeter X c + section a	irea			
	where c is the cantilever outstand of the effective area, as below.	show	'n		
	$70941 = 4c^2 + 1490c + 9310$				
	Solving, $c = 37.6$ mm				
	$\frac{h-2t_{f}}{2} = \frac{254.1-2\times14.2}{2} = 11$ $h + 2c > 37.6 \text{ mm}$ Therefore there is no overlap betwe flanges	2.9 r veen t	nm, he		
	Thickness of base plate (t_p)				
BS EN 1993-1-8 6.2.5(4)	$t_{p} = c \left(\frac{3f_{cd}}{f_{y} \times \gamma_{MO}} \right)^{0.5}$				
	$t_p = 37.6 \times \left(\frac{3 \times 17}{275 \times 1.0}\right)^{0.5} = 16.2 \text{ mm}$				
	$t_p < 40$, therefore nominal design strength = 275 N/mm ² .				
	Adopt 20mm thick base plate in S275 material			$t_p = 20$) mm
	Connection of base plate to column				
	It is assumed that the axial force is transferred by direct be which is achieved by normal fabrication processes. Only nor welds are required to connect the baseplate to the column in practice full profile Gmm fillet welds are often used.	earing minal 1, thoi), Jgh		

		Job No.			Sheet	1 of	4	Rev C		
		Job Title	Example no. 12		Revised	l by D	GB, Af	pril 09		
		Subject	ject Frame stability							
Silwood Park, Asc Telephone: (0134/	ot, Berks SL5 7QN									
Fax: (01344) 6365	570	Client		Made by	KP	Date	Dec 2	2007		
CALCULATION	I SHEET			Checked by	BD	Date	Dec 2	2007		
Unless stated	Frame stability									
otherwise all references are	Introduction									
to BS EN 1993-1-1	This example examines the building for susceptibility to sway instability (second-order effects). Beam-and-column type plane frames in buildings may be checked for susceptibility to second order effects using first order analysis and the approximate formula:									
	$\alpha_{cr} = \frac{H_{Ed}}{V_{Ed}} \frac{h}{\delta_{H,Ed}}$									
5.2.1(4)B	If $a_{cr} \ge 10$, any secon ignored. The definition example.	d-order e 1 of each	effects are small parameter is giv	enough to en later in f	be this					
	Figure 12.1 shows the structural layout of the braced bays which are present in each end gable of the building. Unbraced bays occur at 6 m spacing along the 48 m length of the building (i.e. 8 bays in total). The braced bay therefore attracts one half of the total wind loading on the windward face of the building which is assumed to be transferred to the bracing via a wind girder in the roof and diaphraam action in the floor slabs at each floor level									
	The bracing must also carry the equivalent horizontal forces that arise from frame imperfections such as a lack of verticality. The equivalent imperfection forces are based on 1/200 (0.5%) of the total factored permanent and variable load acting on each roof and floor level. These imperfection forces are also distributed to the end bracing via wind girder and floor diaphragm action such that each braced bay receives the equivalent of one half of the total equivalent horizontal force calculated for the whole building. Ultimate limit state (ULS) The check for susceptibility to second order effects is a ULS check. In this example, the frame will be checked using Equation 6.10b, and only under one load combination with wind as the leading action. In									
BS EN 1990 Eqn. 6.10b	Design value of action $\xi \gamma_G G_k + \gamma_Q Q_k + \psi_0 \gamma_Q G_k$	is is Q_k								
	Partial factors for act	ions								
BS EN 1990 NA 2.2.3.2 Table NA A1.2(B)	Partial factor for perm Partial factor for variable Reduction factor	anent act e action	fion $\gamma_{\rm G} = 1.35$ $\gamma_{\rm Q} = 1.5$ $\xi = 0.925$	5						

l

Example 12 F	rame stability Sheet 2	of 4 Rev
BS EN 1990 NA 2.2.2 Table NA A1.1	ψ_0 factorsFor imposed floor loads (office areas) $\psi_0 = 0.7$ For snow loads on roofs (H \leq 1000m a.s.l) $\psi_0 = 0.5$ Design value of wind load, as the leading actionTotal wind load on windward face of building= 1.5 x 925 = 1388 kNTotal wind load resisted by braced bay	
	= 0.5 x 1388 = 694 kN Distribution : At roof level = 694 / 8 = 86.8 kN At floor levels = 694 / 4 = 173.5 kN	Wind loading on braced bay
	Design value of the vertical loads, in combination with wind as the leading action	
	Roof loading on one braced frame = $14 \times 6 [0.925 \times 1.35 \times 0.9 + 1.5 \times 0.5 \times 0.6]$ = 132.2 kN	$g_k = 0.9 \text{ kV/m}^2$ $g_k = 0.6 \text{ kV/m}^2$ (see arrangement and actions)
5.3.2(3)	$= 8 \times 132.2 = 1058 \text{ kN}$ Equivalent horizontal force (acting as a point load) at roof level in	
	end frame = $0.5 \times 0.5\% \times 1058 = 2.7 \text{ kN}$	Equivalent horizonta force at roof level = 2.7 kN
	Floor loading on one braced frame = $14 \times 6 [0.925 \times 1.35 \times 3.7 + 1.5 \times 0.7 \times 3.3]$ = 679 kN Total floor loading = $8 \times 679 = 5433 \text{ kN}$	$g_k = 3.7 \text{ kVm}^2$ $g_k = 3.3 \text{ kVm}^2$ (see arrangement and actions) Faumelent because
5.3.2(3)	Equivalent horizontal force (acting as a point load) at each floor level in end frame = $0.5 \times 0.5\% \times 5433 = 13.6$ kN	force at each floor level = 13.6 kN
	Note that in accordance with 5.3.2(3) the equivalent imperfection forces may be modified (reduced) by α_h and α_m . It is conservative to ignore these reduction factors. Whereas α_h and α_m reduce the magnitude of the forces transferred to the stability system (in this example, the bracing in the end bays), the effect of α_h and α_m on the value of α_{cr} is modest. In this example, α_h and α_m have been set to 1.0.	

Example 12 Frame stability Sheet 4 of 4 Rev Assumptions Column bases both pinned Columns continuous over full height Bracing and beams pinned to columns Frame stability The measure of frame stability, α_{cr} is verified as follows: $\alpha_{cr} = \frac{H_{Ed}}{V_{Ed}} \frac{h}{\delta_{H,Ed}}$ 5.2.1(4)B where: is the (total) design value of the horizontal reaction at $H_{\rm Ed}$ bottom of storey $V_{\rm Ed}$ is the (total) design vertical load at bottom of storey is the storey height h $\delta_{ extsf{H,Ed}}$ is the storey sway, for the story under consideration Fourth Storey: $H_{\rm Ed,4} = 89.5 \, \rm kN$ $V_{\rm Ed,4}$ = 1058 × 0.5 = 529 kN $\alpha_{cr,4} = \frac{89.5}{529} \frac{4500}{89} = 85.5 > 10$ Not sway sensitive Third Storey: $H_{\rm Ed,3}$ = 89.5 + 187.1 = 276.6 kN $V_{\rm Ed,3}$ = 529 + 0.5 × 5433 = 3246 kN $\alpha_{cr,3} = \frac{276.6}{3215} 46 \frac{4500}{10.2} = 37.6 > 10$ Not sway sensitive Second Storey : $H_{\rm Ed,2}$ = 276.6 + 187.1 = 463.7 kN $V_{Ed,2} = 3246 + 0.5 \times 5433 = 5963 \text{ kN}$ $\alpha_{cr,2} = \frac{463.7}{5963} \frac{4500}{10.7} = 32.7 > 10$ Not sway sensitive First Storey : $H_{\rm Ed,1} = 463.7 + 187.1 = 650.8 \,\rm kN$ $V_{Ed,1} = 5963 + 0.5 \times 5433 = 8680 \text{ kN}$ $\alpha_{cr,1} = \frac{650.8}{8680} \frac{5000}{10.2} = 36.8 > 10$ Not sway sensitive Therefore, the frame is not sway sensitive and second-order effects can be ignored.

7 **BIBLIOGRAPHY**

7.1 SCI and SCI/BCSA publications

Steel building design: Introduction to the Eurocodes (P361) The Steel Construction Institute, 2009

Steel building design: Concise Eurocodes (P362) The Steel Construction Institute, 2009

Steel building design: Design data (P363) The Steel Construction Institute and The British Constructional Steelwork Association, 2009

Steel building design: Worked examples – open sections (P364) The Steel Construction Institute, 2009

Handbook of Structural Steelwork (Eurocode Edition) (P366) The British Constructional Steelwork Association and The Steel Construction Institute, 2009

Steel building design: Worked Examples - hollow sections (P374) The Steel Construction Institute, 2009

Steel building design: Fire resistant design (P375) The Steel Construction Institute, 2009

Steel building design: Worked examples for students (Without National Annex values) (P376)

The Steel Construction Institute, 2009

Architectural Teaching Resource Studio Guide – Second Edition (P167) The Steel Construction Institute, 2003

7.2 Other publications

Steel Designers' Manual 6th Edition SCI and Blackwell Publishing, 2003

GULVANESSIAN, H., CALGARO, J. A. and HOLICKY, M. Designers' guide to EN 1990 Eurocode: Basis of structural design Thomas Telford, 2002

GULVANESSIAN, H., CALGARO, J.A., FORMICHI P. and HARDING, G. Designers' guide to EN 1991-1-1, 1991-1-3 and 1991-1-5 to 1-7 Eurocode 1: Actions on structures: General rules and actions on buildings Thomas Telford (to be published in 2008)

NARAYANAN, R, S. and BEEBY, A.

Designers' guide to EN 1992-1-1 and EN 1992-1-2 Eurocode 2: Design of concrete structures. General rules and rules for buildings and structural fire design

Thomas Telford, 2005

GARDNER, L. and NETHERCOT, D. Designers' guide to EN 1993-1-1 Eurocode 3: Design of steel structures – Part 1.1: General rules and rules for buildings Thomas Telford, 2005

JOHNSON, R .P. and ANDERSON D.

Designers' guide to EN 1994-1-1 Eurocode 4: Design of composite steel and concrete structures – Part 1.1: General rules and rules for buildings Thomas Telford, 2004

7.3 Sources of electronic information

Sources of electronic information include:

Access steel web site: www.access-steel.com

Corrosion protection guides – various titles available from Corus web site: www.corusconstruction.com

Eurocodes expert: www.eurocodes.co.uk

NCCI website: www.steel-ncci.co.uk

7.4 Structural Eurocodes

The following Eurocode Parts are applicable for the design of steel-framed buildings, although not all will be required for a specific structure, depending on its use and form of construction.

BS EN 1990 Eurocode - Basis of structural design

BS EN 1991 Eurocode 1: Actions on structures

BS EN 1991-1-1	Part 1-1: General actions. Densities, self-weight, imposed loads for buildings
BS EN 1991-1-2	Part 1-2: General actions. Actions on structures exposed to fire
BS EN 1991-1-3	Part 1-3: General actions. Snow loads
BS EN 1991-1-4	Part 1-4: General actions. Wind actions
BS EN 1991-1-5	Part 1-5: General actions. Thermal actions
BS EN 1991-1-6	Part 1-6: General actions. Actions during execution
BS EN 1991-1-7	Part 1-7: General actions. Accidental actions
BS EN 1992 Eurocode	2: Design of concrete structures
BS EN 1992-1-1	Part 1-1: General rules and rule for buildings
BS EN 1992-1-2	Part 1-2: General rules. Structural fire design
BS EN 1993 Eurocode	3: Design of steel structures
BS EN 1993-1-1	Part 1-1: General rules and rules for buildings
BS EN 1993-1-2	Part 1-2: General rules. Structural fire design
BS EN 1993-1-3	Part 1-3: General rules. Supplementary rules for cold- formed members and sheeting
BS EN 1993-1-5	Part 1-5: Plated structural elements

BS EN 1993-1-8	Part 1-8: Design of joints
BS EN 1993-1-9	Part 1-9: Fatigue strength
BS EN 1993-1-10	Part 1-10: Material toughness and through-thickness properties
BS EN 1993-1-12	Part 1-12: Additional rules for the extension of EN 1993 up to steel grades S700
BS EN 1994 Eurocode	4: Design of composite steel and concrete structures
BS EN 1994-1-1	Part 1-1: General rules and rules for buildings
BS EN 1994-1-2	Part 1-2: General rules. Structural fire design

National Annexes

UK National Annexes are published by BSI.

Published Documents

PD 6695-1-10:2008 Recommendations for the design of structures to BS EN 1993-1-10 PDs are available from BSI

7.5 Product Standards

BS EN 10025-2:2004 Hot rolled products of structural steels. Part 2: Technical delivery conditions for non-alloy structural steels

BS EN 10164:1993 Steel products with improved deformation properties perpendicular to the surface of the product. Technical delivery conditions

BS EN 10210-1:2006 Hot finished structural hollow sections of non-alloy and fine grain structural steels Part 1: Technical delivery requirements

BS EN 10219-1:2006 Cold formed hollow sections of non-alloy and fine grain steels. Part 1: Technical delivery conditions